[1] Adams R. A.: 
Sobolev Spaces. Pure and Applied Mathematics, 65, Academic Press, New York, 1975. 
MR 0450957 | 
Zbl 1098.46001[2] Afrouzi G. A., Graef J. R., Shokooh S.: 
Multiple solutions for Neumann systems in an Orlicz–Sobolev space setting. Miskolc Math. Notes 18 (2017), no. 1, 31–45. 
DOI 10.18514/MMN.2017.1906 | 
MR 3669881[3] Afrouzi G. A., Heidarkhani S., Shokooh S.: 
Infinitely many solutions for Steklov problems associated to non-homogeneous differential operators through Orlicz–Sobolev spaces. Complex Var. Elliptic Equ. 60 (2015), no. 11, 1505–1521. 
MR 3393865[4] Afrouzi G. A., Rădulescu V., Shokooh S.: 
Multiple solutions of Neumann problems: an Orlicz–Sobolev space setting. Bull. Malays. Math. Sci. Soc. 40 (2017), no. 4, 1591–1611. 
DOI 10.1007/s40840-015-0153-x | 
MR 3712573[6] Bonanno G., Bisci G. M., Rădulescu V.: 
Existence of three solutions for a non-homogeneous Neumann problem through Orlicz–Sobolev spaces. Nonlinear Anal. 74 (2011), no. 14, 4785–4795. 
DOI 10.1016/j.na.2011.04.049 | 
MR 2810717[7] Bonanno G., Bisci G. M., Rădulescu V.: 
Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz–Sobolev spaces. C. R. Math. Acad. Sci. Paris 349 (2011), no. 5–6, 263–268. 
DOI 10.1016/j.crma.2011.02.009 | 
MR 2783317[8] Bonanno G., Bisci G. M., Rădulescu V.: 
Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz–Sobolev spaces. Monatsh. Math. 165 (2012), no. 3–4, 305–318. 
DOI 10.1007/s00605-010-0280-2 | 
MR 2891255[9] Bonanno G., Bisci G. M., Rădulescu V.: 
Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz–Sobolev spaces. Nonlinear Anal. 75 (2012), no. 12, 4441–4456. 
DOI 10.1016/j.na.2011.12.016 | 
MR 2927113[10] Bonanno G., Candito P.: 
Infinitely many solutions for a class of discrete non-linear boundary value problems. Appl. Anal. 88 (2009), no. 4, 605–616. 
DOI 10.1080/00036810902942242 | 
MR 2541143[11] Bonanno G., Di Bella B.: 
Infinitely many solutions for a fourth-order elastic beam equation. NoDEA Nonlinear Differential Equations Appl. 18 (2011), no. 3, 357–368. 
DOI 10.1007/s00030-011-0099-0 | 
MR 2811057[13] Clément Ph., de Pagter B., Sweers G., de Thélin F.: 
Existence of solutions to a semilinear elliptic system through Orlicz–Sobolev spaces. Mediterr. J. Math. 1 (2004), no. 3, 241–267. 
DOI 10.1007/s00009-004-0014-6 | 
MR 2094464[14] D'Aguì G., Sciammetta A.: 
Infinitely many solutions to elliptic problems with variable exponent and nonhomogeneous Neumann conditions. Nonlinear Anal. 75 (2012), no. 14, 5612–5619. 
DOI 10.1016/j.na.2012.05.009 | 
MR 2942940[15] Diening L.: 
Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129 (2005), no. 8, 657–700. 
MR 2166733[17] Fan X., Zhao D.: 
On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$. J. Math. Anal. Appl. 263 (2001), no. 2, 424–446. 
MR 1866056[20] Kováčik O., Rákosník J.: 
On spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$. Czechoslovak Math. J. 41 (1991), no. 4, 592–618. 
MR 1134951[21] Kristály A., Mihăilescu M., Rădulescu V.: 
Two non-trivial solutions for a non-homogeneous Neumann problem: an Orlicz–Sobolev space setting. Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), no. 2, 367–379. 
MR 2496969[22] Mihăilescu M., Rădulescu V.: 
Eigenvalue problems associated with nonhomogeneous differential operators in Orlicz–Sobolev spaces. Anal. Appl. (Singap.) 6 (2008), no. 1, 83–98. 
DOI 10.1142/S0219530508001067 | 
MR 2380887[23] Mihăilescu M., Rădulescu V.: 
Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev space. Ann. Inst. Fourier (Grenoble) 58 (2008), no. 6, 2087–2111. 
DOI 10.5802/aif.2407 | 
MR 2473630[24] Musielak J.: 
Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, 1034, Springer, Berlin, 1983. 
MR 0724434 | 
Zbl 0557.46020[25] Pfeiffer C., Mavroidis C., Cohen Y. B., Dolgin B.: Electrorheological fluid based force feedback device. Conference on Telemanipulator and Telepresence Technologies VI, Part of SPIE's Photonics East, Boston, Proc. 3840 (1999), 88–99.
[26] Rao M. M., Ren Z. D.: 
Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, New York. 1991. 
MR 1113700 | 
Zbl 0724.46032