Previous |  Up |  Next


Full entry | Fulltext not available (moving wall 24 months)      Feedback
linear differential equation; admissible pair; delayed argument
We consider the equation $$ -y'(x)+q(x)y(x-\varphi (x))=f(x), \quad x \in \mathbb R, $$ where $\varphi $ and $q$ ($q \geq 1$) are positive continuous functions for all $ x\in \mathbb R $ and $f \in C(\mathbb R)$. By a solution of the equation we mean any function $y$, continuously differentiable everywhere in $\mathbb R$, which satisfies the equation for all $x \in \mathbb R$. We show that under certain additional conditions on the functions $\varphi $ and $q$, the above equation has a unique solution $y$, satisfying the inequality $$ \|y'\|_{C(\mathbb R)}+\|qy\|_{C(\mathbb R)}\leq c\|f\|_{C(\mathbb R)}, $$ where the constant $c\in (0,\infty )$ does not depend on the choice of $f$.
[1] Azbelev, N. V., Kultyshev, S. Yu., Tsalynk, V. Z.: Functional Differential Equations and Variational Problems. R & C Dynamics, Moskva (2006), Russian. MR 1190052
[2] Chernyavskaya, N., Shuster, L.: Correct solvability of the Sturm-Liouville equation with delayed argument. J. Differ. Equations 261 (2016), 3247-3267. DOI 10.1016/j.jde.2016.05.027 | MR 3527629 | Zbl 1348.34118
[3] El'sgol'ts, L. È., Norkin, S. B.: Introduction to the Theory of Differential Equations with Deviating Argument. Nauka, Moskva (1971), Russian. MR 0352646 | Zbl 0224.34053
[4] Hale, J. K.: Theory of Functional Differential Equations. Applied Mathematical Sciences 3, Springer, New York (1977). DOI 10.1007/978-1-4612-9892-2 | MR 0508721 | Zbl 0352.34001
[5] Massera, J. L., Schäffer, J. J.: Linear Differential Equations and Function Spaces. Pure and Applied Mathematics 21, Academic Press, New York (1966). MR 0212324 | Zbl 0243.34107
[6] Myshkis, A. D.: Linear Differential Equations with Retarded Argument. Nauka, Moskva (1972), Russian. MR 0352648 | Zbl 0261.34040
Partner of
EuDML logo