[1] Chen, J., Qiao, H.: Muscle-synergies-based neuromuscular control for motion learning and generalization of a musculoskeletal system. IEEE Trans. Systems Man Cybernet.: Systems (2020), 1-14.
[2] Chen, S. Y.: 
Kalman filter for robot vision: A survey. IEEE Trans. Industr. Electron. 59 (2012), 11, 4409-4420. 
DOI 10.1109/tie.2011.2162714 
[3] Chen, W., Ding, D., Ge, X., Han, Q., Wei, G.: 
$H_{\infty}$ containment control of multiagent systems under event-triggered communication scheduling: The finite-horizon case. IEEE Trans. Cybernet. 50 (2020), 4, 1372-1382. 
DOI 10.1109/tcyb.2018.2885567 
[4] Ding, D., Han, Q., Wang, Z., Ge, X.: 
A survey on model-based distributed control and filtering for industrial cyber-physical systems. IEEE Trans. Industr. Inform. 15 (2019), 5, 2483-2499. 
DOI 10.1109/tii.2019.2905295 
[6] Ding, D., Wang, Z., Han, Q., Wei, G.: 
Neural-network-based output-feedback control under round-robin scheduling protocols. IEEE Trans. Cybernet. 49 (2019), 6, 2372-2384. 
DOI 10.1109/tcyb.2018.2827037 
[7] Ding, D., Wang, Z., Han, Q., Wei, G.: 
Security control for discrete-time stochastic nonlinear systems subject to deception attacks. IEEE Trans. Systems Man Cybernet.: Systems 48 (2018), 5, 779-789. 
DOI 10.1109/tsmc.2016.2616544 
[8] Ding, D., Wang, Z., Ho, D. W. C., Wei, G.: 
Distributed recursive filtering for stochastic systems under uniform quantizations and deception attacks through sensor networks. Automatica 78 (2017), 231-240. 
DOI 10.1016/j.automatica.2016.12.026 | 
MR 3614098 
[9] Dong, H., Hou, N., Wang, Z., Liu, H.: 
Finite-horizon fault estimation under imperfect measurements and stochastic communication protocol: Dealing with finite-time boundedness. Int. J.Robust Nonlinear Control 29 (2019), 1, 117-134. 
DOI 10.1002/rnc.4382 | 
MR 3886112 
[10] Ge, X., Han, Q.: 
Consensus of multiagent systems subject to partially accessible and overlapping Markovian network topologies. IEEE Trans. Cybernet. 47 (2017), 8, 1807-1819. 
DOI 10.1109/tcyb.2016.2570860 
[11] Ge, X., Han, Q., Wang, Z.: 
A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans. Cybernet. 49(2019), 1, 171-183. 
DOI 10.1109/tcyb.2016.2570860 
[12] Ge, X., Han, Q., Wang, Z.: 
A threshold-parameter-dependent approach to designing distributed event-triggered $H_{\infty}$ consensus filters over sensor networks. IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159. 
DOI 10.1109/tcyb.2017.2789296 
[13] Guan, R. P., Ristic, B., Wang, L., Moran, B., Evans, R.: 
Feature-based robot navigation using a Doppler-azimuth radar. Int. J. Control 90 (2017), 4, 888-900. 
DOI 10.1080/00207179.2016.1244727 | 
MR 3613055 
[15] Huang, C., Shen, B., Chen, H., Shu, H.: 
A dynamically event-triggered approach to recursive filtering with censored measurements and parameter uncertainties. J. Franklin Inst. 356 (2019), 15, 8870-8889. 
DOI 10.1016/j.jfranklin.2019.08.029 | 
MR 4010163 
[16] Khan, A., Rinner, B., Cavallaro, A.: 
Cooperative robots to observe moving targets: Review. IEEE Trans. Cybernet. 48 (2018), 1, 187-198. 
DOI 10.1109/tcyb.2016.2628161 
[17] Kim, Y., An, J., Lee, J.: 
Robust navigational system for a transporter using GPS/INS fusion. IEEE Trans. Industr. Electron. 65 (2018), 4, 3346-3354. 
DOI 10.1109/tie.2017.2752137 
[18] Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale, P.: 
Keyframe-based visual-inertial odometry using nonlinear optimization. Int. J. Robotics Res. 34 (2015), 3, 314-334. 
DOI 10.1177/0278364914554813 
[19] Li, B., Wang, Z., Han, Q., Liu, H.: 
Input-to-state stabilization in probability for nonlinear stochastic systems under quantization effects and communication protocols. IEEE Trans. Cybernet. 49 (2019), 9, 3242-3254. 
DOI 10.1109/tcyb.2018.2839360 | 
MR 3998230 
[20] Li, Q., Shen, B., Wang, Z., Huang, T., Luo, J.: 
Synchronization control for a class of discrete time-delay complex dynamical networks: A dynamic event-triggered approach. IEEE Trans. Cybernet. 49 (2019), 5, 1979-1986. 
DOI 10.1109/tcyb.2018.2818941 | 
MR 3891660 
[21] Li, R., Qiao, H.: 
A survey of methods and strategies for high-precision robotic grasping and assembly tasks-some new trends. IEEE/ASME Trans. Mechatronics 24 (2019), 6, 2718-2732. 
DOI 10.1109/tmech.2019.2945135 
[22] Li, X., Chen, W., Chan, C., Li, B., Song, X.: 
Multi-sensor fusion methodology for enhanced land vehicle positioning. Inform. Fusion 46 (2019), 51-62. 
DOI 10.1016/j.inffus.2018.04.006 
[23] Liu, H., Sun, F., Fang, B., Zhang, X.: 
Robotic room-level localization using multiple sets of sonar measurements. IEEE Trans. Instrument. Measurement 66 (2017), 1, 2-13. 
DOI 10.1109/tim.2016.2618978 
[24] Lowry, S., Sunderhauf, N., Newman, P., Leonard, J. J., Cox, D., Corke, P., Milford, M. J.: 
Visual place recognition: A survey. IEEE Trans. Robotics 32 (2016), 1, 1-19. 
DOI 10.1109/tro.2015.2496823 
[25] Luo, R. C., Hsiao, T. J.: 
Dynamic wireless indoor localization incorporating with an autonomous mobile robot based on an adaptive signal model fingerprinting approach. IEEE Trans. Industr. Electron. 66 (2019), 3, 1940-1951. 
DOI 10.1109/tie.2018.2833021 
[26] Luo, Y., Wang, Z., Wei, G., Alsaadi, F. E., Hayat, T.: 
State estimation for a class of artificial neural networks with stochastically corrupted measurements under round-robin protocol. Neural Networks 77 (2016), 70-79. 
DOI 10.1016/j.neunet.2016.01.001 
[27] Ma, L., Wang, Z., Liu, Y., Alsaadi, F. E.: 
Distributed filtering for nonlinear time-delay systems over sensor networks subject to multiplicative link noises and switching topology. Int.J. Robust Nonlinear Control 29 (2019), 10, 2941-2959. 
DOI 10.1002/rnc.4535 | 
MR 3973575 
[29] Shen, B., Wang, Z., Qiao, H.: 
Event-triggered state estimation for discrete-time multidelayed neural networks with stochastic parameters and incomplete measurements. IEEE Trans. Neural Networks Learning Systems 28 (2017), 5, 1152-1163. 
DOI 10.1109/tnnls.2016.2516030 | 
MR 3721783 
[30] Shen, B., Wang, Z., Wang, D., Luo, J., Pu, H., Peng, Y.: 
Finite-horizon filtering for a class of nonlinear time-delayed systems with an energy harvesting sensor. Automatica 100 (2019), 144-152. 
DOI 10.1016/j.automatica.2018.11.010 | 
MR 3881144 
[31] Wan, X., Wang, Z., Han, Q., Wu, M.: 
A recursive approach to quantized $H_{\infty}$ state estimation for genetic regulatory networks under stochastic communication protocols. IEEE Trans. Neural Networks Learning Systems 30 (2019), 9, 2840-2852. 
DOI 10.1109/tnnls.2018.2885723 | 
MR 4001276 
[32] Wan, X., Wang, Z., Han, Q., Wu, M.: 
Finite-time $H_{\infty}$ state estimation for discrete time-delayed genetic regulatory networks under stochastic communication protocols. IEEE Trans. Circuits Systems I: Regular Papers 65 (2018), 10, 3481-3491. 
DOI 10.1109/tcsi.2018.2815269 | 
MR 3854691 
[33] Wang, Z., Dong, H., Shen, B., Gao, H.: 
Finite-horizon $H_{\infty}$ filtering with missing measurements and quantization effects. IEEE Trans. Automat. Control 58 (2013), 7, 1707-1718. 
DOI 10.1109/tac.2013.2241492 | 
MR 3072855 
[34] Xu, W., Ho, D. W. C., Li, L., Cao, J.: 
Event-triggered schemes on leader-following consensus of general linear multiagent systems under different topologies. IEEE Trans. Cybernetics 47 (2017), 1, 212-223. 
DOI 10.1109/tcyb.2015.2510746 
[35] Yang, F., Wang, Z., Lauria, S., Liu, X.: 
Mobile robot localization using robust extended $H_{\infty}$ filtering. Proc. Inst. Mechanical Engineers, Part I: J. Systems Control Engrg. 223 (2009), 8, 1067-1080. 
DOI 10.1243/09596518jsce791 
[36] Zhang, X., Han, Q.: 
A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs. IEEE Trans. Cybernet. 46 (2016), 12, 2745-2757. 
DOI 10.1109/tcyb.2015.2487420 
[37] Zhang, X., Han, Q., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C.: 
Networked control systems: A survey of trends and techniques. IEEE/CAA J. Automat. Sinica (2019), 1-17. 
DOI 10.1109/tcyb.2015.2487420 | 
MR 3748030 
[38] Zou, L., Wang, Z., Gao, H.: 
Observer-based $H_{\infty}$ control of networked systems with stochastic communication protocol: The finite-horizon case. Automatica 63 (2016), 366-373. 
DOI 10.1016/j.automatica.2015.10.045 | 
MR 3430004 
[39] Zou, L., Wang, Z., Gao, H.: 
Set-membership filtering for time-varying systems with mixed time-delays under round-robin and weighted try-once-discard protocols. Automatica 74 (2016), 341-348. 
DOI 10.1016/j.automatica.2016.07.025 | 
MR 3569400 
[40] Zuo, Z., Han, Q., Ning, B., Ge, X., Zhang, X.: 
An overview of recent advances in fixed-time cooperative control of multiagent systems. IEEE Trans. Industr. Inform. 14 (2018), 6, 2322-2334. 
DOI 10.1109/tii.2018.2817248 | 
MR 3932129