Previous |  Up |  Next


distributed filtering; large-scale systems; energy constraints; sensor networks; power systems
This paper addresses the distributed resilient filtering for discrete-time large-scale systems (LSSs) with energy constraints, where their information are collected by sensor networks with a same topology structure. As a typical model of information physics systems, LSSs have an inherent merit of modeling wide area power systems, automation processes and so forth. In this paper, two kinds of channels are employed to implement the information transmission in order to extend the service time of sensor nodes powered by energy-limited batteries. Specifically, the one has the merit of high reliability by sacrificing energy cost and the other reduces the energy cost but could result in packet loss. Furthermore, a communication scheduling matrix is introduced to govern the information transmission in these two kind of channels. In this scenario, a novel distributed filter is designed by fusing the compensated neighboring estimation. Then, two matrix-valued functions are derived to obtain the bounds of the covariance matrices of one-step prediction errors and the filtering errors. In what follows, the desired gain matrices are analytically designed to minimize the provided bounds with the help of the gradient-based approach and the mathematical induction. Furthermore, the effect on filtering performance from packet loss is profoundly discussed and it is claimed that the filtering performance becomes better when the probability of packet loss decreases. Finally, a simulation example on wide area power systems is exploited to check the usefulness of the designed distributed filter.
[1] Bacha, S., Li, H., Montenegro-Martinez, D.: Complex power electronics systems modeling and analysis. IEEE Trans. Industr. Electron. 66 (2019), 8, 6412-6415. DOI 10.1109/tie.2019.2901189
[2] Chen, W., Ding, D., Dong, H., Wei, G.: Distributed resilient filtering for power systems subject to deial-of-service attacks. IEEE Trans. Systems Man Cybernet.: Systems. 49 (2019), 8, 1688-1697. DOI 10.1109/tsmc.2019.2905253
[3] Chen, W., Ding, D., Ge, X., Han, Q.-L., Wei, G.: $H_\infty$ containment control of multi-agent systems under event-triggered communication scheduling: The finite-horizon case. IEEE Trans. Cybernet. (2018), 1-11.
[4] Chen, B., Hu, G., Ho, Daniel W. C., Yu, L.: Distributed Kalman filtering for time-varying discrete sequential systems. Automatica 99 (2019), 228-236. DOI 10.1016/j.automatica.2018.10.025 | MR 3875467
[5] Chen, B., Zhang, W. A., Yu, L.: Distributed finite-horizon fusion Kalman filtering for bandwidth and energy constrained wireless sensor networks. IEEE Trans. Signal Process. 62 (2014), 4, 797-812. DOI 10.1109/tsp.2013.2294603 | MR 3160314
[6] Dashkovskiy, S. N., Rüffer, B. S., Wirth, F. R.: Small gain theorems for large scale systems and construction of ISS Lyapunov functions. SIAM J. Control Optim. 48 (2010), 6, 4089-4118. DOI 10.1137/090746483 | MR 2645475
[7] Ding, D., Han, Q.-L., Wang, Z., Ge, X.: A survey on model-based distributed control and filtering for industrial cyber-physical systems. IEEE Trans. Industr. Inform. 15 (2019), 5, 2483-2499. DOI 10.1109/tii.2019.2905295
[8] Ding, L., Han, Q.-L., Wang, L., Sindi, E.: Distributed cooperative optimal control of DC microgrids with communication delays. IEEE Trans. Industr. Inform. 14 (2018), 9, 3924-3935. DOI 10.1109/tii.2018.2799239
[9] Ding, D., Wang, Z., Dong, H., Shu, H.: Distributed $H_\infty$ state estimation with stochastic parameters and nonlinearities through sensor networks: The finite-horizon case. Automatica 48 (2012), 8, 1575-1585. DOI 10.1016/j.automatica.2012.05.070 | MR 2950405
[10] Ding, D., Wang, Z., Han, Q.-L.: A set-membership approach to event-triggered filtering for general nonlinear systems over sensor networks. IEEE Trans. Automat. Control (2019), 1-1. DOI 10.1109/tac.2019.2934389
[11] Ding, D., Wang, Z., Han, Q.-L., Wei, G.: Neural-network-based output-feedback control under Round-Robin scheduling protocols. IEEE Trans. Cybernet. 49 (2019), 6, 2372-2384. DOI 10.1109/tcyb.2018.2827037
[12] Farina, M., Ferrari-Trecate, G., Scattolini, R.: Moving-horizon partition-based state estimation of large-scale systems. Automatica 46 (2010), 910-918. DOI 10.1016/j.automatica.2010.02.010 | MR 2877165
[13] Ge, X., Han, Q.-L., Wang, Z.: A threshold-parameter-dependent approach to designing distributed event-triggered $H_\infty$ consensus filters over sensor networks. IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159. DOI 10.1109/tcyb.2017.2789296
[14] Ge, X., Han, Q.-L., Wang, Z.: A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans. Cybernet. 49 (2019), 1, 171-183. DOI 10.1109/tcyb.2017.2769722
[15] Haber, A., Verhaegen, M.: Moving horizon estimation for large-scale interconnected systems. IEEE Trans. Automat. Control 58 (2013), 11, 2834-2847. DOI 10.1109/tac.2013.2272151 | MR 3125992
[16] Han, D., Wu, J., Zhang, H.: Optimal sensor scheduling for multiple linear dynamical systems. Automatica 75 (2017), 260-270. DOI 10.1016/j.automatica.2016.09.015 | MR 3582179
[17] Hu, S., Yue, D., Han, Q.-L.: Observer-based event-triggered control for networked linear systems subject to denial-of-service attacks. IEEE Trans. Cybernet. (2019), 1-13. DOI 10.1109/tcyb.2019.2903817 | MR 3632431
[18] Hu, J., Wang, Z., Liu, S., Gao, H.: A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements. Automatica 64 (2016), 155-162. DOI 10.1016/j.automatica.2015.11.008 | MR 3433092
[19] Khan, U. A., Moura, J. M. F.: Distributing the Kalman filter for large-scale systems. IEEE Trans. Signal Process. 56 (2008), 10, 4919-4935. DOI 10.1109/tsp.2008.927480 | MR 2517222
[20] Kim, H., Park, J., Joo, Y.: Decentralized $H_\infty$ fuzzy filter for nonlinear large-scale sampled-data systems with uncertain interconnections. Fuzzy Sets Systems 344 (2018), 145-162. DOI 10.1016/j.fss.2017.10.010 | MR 3811679
[21] Liang, J., Wang, F., Wang, Z.: Robust Kalman filtering for two-dimensional systems with multiplicative noises and measurement degradations: The finite-horizon case. Automatica 96 (2018), 166-177. DOI 10.1016/j.automatica.2018.06.044 | MR 3844960
[22] Liu, Q., Wang, Z., He, X.: A resilient approach to distributed filter design for time-varying systems under stochastic nonlinearities and sensor degradation. IEEE Trans. Signal Process. 65 (2017), 5, 1300-1309. DOI 10.1109/tsp.2016.2634541 | MR 3597280
[23] Liu, J., Yao, Q., Hu, Y.: Model predictive control for load frequency of hybrid power system with wind power and thermal power. Energy 172 (2019), 555-565. DOI 10.1016/ | MR 3889781
[24] Liu, A., Yu, L., Zhang, W.-A., Chen, M. Z. Q.: Moving horizon estimation for networked systems with quantized measurements and packet dropouts. IEEE Trans. Circuits Systems I: Regular Papers 60 (2013), 7, 1823-1834. DOI 10.1109/tcsi.2012.2226499 | MR 3072453
[25] Ma, L., Xu, M., Jia, R., Ye, H.: Exponential $H_\infty$ filter design for stochastic Markovian jump systems with both discrete and distributed time-varying delays. Kybernetika 50 (2014),4, 491-511. DOI 10.14736/kyb-2014-4-0491 | MR 3275081
[26] Marelli, D., Fu, M.: Distributed weighted least-squares estimation with fast convergence for large-scale systems. Automatica 51 (2015) 27-39. DOI 10.1016/j.automatica.2014.10.077 | MR 3284750
[27] Nourian, M., Leong, A., Dey, S.: Optimal energy allocation for Kalman filtering over packet dropping links with imperfect acknowledgments and energy harvesting constraints. IEEE Trans. Automat. Control 59 (2014), 8, 2128-2143. DOI 10.1109/tac.2014.2319011 | MR 3245252
[28] Pavelkova, L.: Nonlinear Bayesian state filtering with missing measurements and bounded noise and its application to vehicle position estimation. Kybernetika 47 (2011), 3, 370-384. MR 2857195
[29] Rana, M., Li, L., Su, S. W: Microgrid state estimation: A distributed approach. IEEE Trans.Ind. Inform. 14 (2018), 8, 3368-3375. DOI 10.1109/tii.2017.2782750
[30] Riverso, S., Trecate, G. F.: Hycon2 benchmark: Power network system. arXiv: 1207.2000vl (2012).
[31] Shi, L., Cheng, P., Chen, J.: Sensor data scheduling for optimal state estimation with communication energy constraint. Automatica 47 (2011), 8, 1693-1698. DOI 10.1016/j.automatica.2011.02.037 | MR 2886772
[32] Wang, J., Zhang, X.-M., Han, Q.-L.: Event-triggered generalized dissipativity filtering for neural networks with time-varying delays. IEEE Trans. Neural Networks Learning Systems 27 (2016), 1, 77-88. DOI 10.1109/tnnls.2015.2411734 | MR 3465626
[33] Xiao, S., Han, Q.-L., Ge, X., Zhang, Y.: Secure distributed finite-time filtering for positive systems over sensor networks under deception attacks. IEEE Trans. Cybernet. 50 (2019), 3, 1220-1229. DOI 10.1109/TCYB.2019.2900478
[34] Yan, H., Li, P., Zhang, H., Zhan, X., Yang, F.: Event-triggered distributed fusion estimation of networked multisensor systems with limited information. IEEE Trans. Systems Man Cybernet.: Systems (2018), 1-8.
[35] Yang, G. H., Wang, J. L.: Robust nonfragile Kalman filtering for uncertain linear systems with estimator gain uncertainty. IEEE Trans. Automat. Control 46 (2001), 2, 343-348. DOI 10.1109/9.905707 | MR 1814586
[36] Yang, W., Zhang, Y., Chen, G.: Distributed filtering under false data injection attacks. Automatica 102 (2019), 4, 34-44. DOI 10.1016/j.automatica.2018.12.027 | MR 3901679
[37] Yu, W., Deng, Z., Zhou, H., Zeng, X.: Distributed event-triggered algorithm for optimal resource allocation of multi-agent systems. Kybernetika 53 (2017),5, 747-764. DOI 10.14736/kyb-2017-5-0747 | MR 3750101
[38] Zhang, X.-M., Han, Q.-L., Peng, C.: Networked control systems: a survey of trends and techniques. IEEE/CAA J. Autom. Sinica (2019), 1-17. DOI 10.1109/JAS.2019.1911651 | MR 3841465
[39] Zhang, X.-M., Han, Q.-L., Wang, Z. D., Zhang, B.-L.: Neuronal state estimation for neural networks with two additive time-varying delay components. IEEE Trans. Cybernet. 47 (2017), 10, 3184-3194. DOI 10.1109/tcyb.2017.2690676 | MR 4064243
[40] Zhang, P., Wang, J.: Event-triggered observer-based tracking control for leader-follower multi-agent systems. Kybernetika 52 (2016),4, 589-606. DOI 10.14736/kyb-2016-4-0589 | MR 3565771
[41] Zhang, D., Yu, L., Zhang, W.-A.: Energy efficient distributed filtering for a class of nonlinear systems in sensor networks. IEEE Sensors J. 15 (2015), 5, 3026-3036. DOI 10.1109/jsen.2014.2386348
Partner of
EuDML logo