[1] Aldwoah, K.A.: Generalized time scales and associated difference equations. 2009, Cairo University, Ph.D. Thesis. 
[2] Allahverdiev, B.P., Tuna, H.: 
An expansion theorem for $q$-Sturm-Liouville operators on the whole line. Turkish J. Math., 42, 3, 2018, 1060-1071,  
MR 3804971[3] Allahverdiev, B.P., Tuna, H.: 
Spectral expansion for singular Dirac system with impulsive conditions. Turkish J. Math., 42, 5, 2018, 2527-2545,  
DOI 10.3906/mat-1803-79 | 
MR 3866169[4] Allahverdiev, B.P., Tuna, H.: 
Eigenfunction expansion in the singular case for Dirac systems on time scales. Konuralp J. Math., 7, 1, 2019, 128-135,  
MR 3948622[5] Allahverdiev, B.P., Tuna, H.: 
The spectral expansion for Hahn-Dirac system on the whole line. Turkish J. Math., 43, 2019, 1668-1687,  
DOI 10.3906/mat-1902-16 | 
MR 3962557[6] Allahverdiev, B.P., Tuna, H.: 
Eigenfunction expansion for singular Sturm-Liouville problems with transmission conditions. Electron. J. Differ.Equat., 2019, 3, 2019, 1-10,  
MR 3904844[7] Allahverdiev, B.P., Tuna, H.: The Parseval equality and expansion formula for singular Hahn-Dirac system. Emerging Applications of Differential Equations and Game Theory, 2020, 209-235, IGI Global, 
[9] Annaby, M.H., Hamza, A.E., Aldwoah, K.A.: 
Hahn difference operator and associated Jackson-Nörlund integrals. J. Optim. Theory Appl., 154, 2012, 133-153,  
DOI 10.1007/s10957-012-9987-7 | 
MR 2931371[10] Annaby, M.H., Hamza, A.E., Makharesh, S.D.: 
A Sturm-Liouville theory for Hahn difference operator. Frontiers of Orthogonal Polynomials and $q$-Series, 2018, 35-84, World Scientific, Singapore,  
MR 3791609[11] Annaby, M.A., Hassan, H.A.: 
Sampling theorems forJackson-Nörlund transforms associated with Hahn-difference operators. J. Math. Anal. Appl., 464, 1, 2018, 493-506,  
DOI 10.1016/j.jmaa.2018.04.016 | 
MR 3794101[12] Arvesú, J.: 
On some properties of $q-$Hahn multiple orthogonal polynomials. J. Comput. Appl. Math., 233, 6, 2010, 1462-1469, Elsevier, doi:10.1016/j.cam.2009.02.062.  
DOI 10.1016/j.cam.2009.02.062 | 
MR 2559332[13] Berezanskii, J.M.: 
Expansions in Eigenfunctions of Selfadjoint Operators. 1968, Amer. Math. Soc., Providence,  
MR 0222718 | 
Zbl 0157.16601[14] Dobrogowska, A., Odzijewicz, A.: 
Second order $q$-difference equations solvable by factorization method. J. Comput. Appl. Math., 193, 1, 2006, 319-346,  
DOI 10.1016/j.cam.2005.06.009 | 
MR 2228721[15] Guseinov, G.Sh.: 
Eigenfunction expansions for a Sturm-Liouville problem on time scales. Int. J. Difference Equat., 2, 1, 2007, 93-104,  
MR 2374102[16] Guseinov, G.Sh.: 
An expansion theorem for a Sturm-Liouville operator on semi-unbounded time scales. Adv. Dyn. Syst. Appl., 3, 1, 2008, 147-160,  
MR 2547666[19] Hamza, A.E., Ahmed, S.A.: 
Existence and uniqueness of solutions of Hahn difference equations. Adv. Difference Equat., 316, 2013, 1-15,  
MR 3337265[20] Hamza, A.E., Makharesh, S.D.: 
Leibniz' rule and Fubinis theorem associated with Hahn difference operator. J. Adv. Math., 12, 6, 2016, 6335-6345,  
DOI 10.24297/jam.v12i6.3836[21] Huseynov, A., Bairamov, E.: 
On expansions in eigenfunctions for second order dynamic equations on time scales. Nonlinear Dyn. Syst. Theory, 9, 1, 2009, 77-88,  
MR 2510666[22] Huseynov, A.: 
Eigenfunction expansion associated with the one-dimensional Schrödinger equation on semi-infinite time scale intervals. Rep. Math. Phys., 66, 2, 2010, 207-235,  
DOI 10.1016/S0034-4877(10)00026-1 | 
MR 2777355[24] Jagerman, D.L.: 
Difference Equations with Applications to Queues. 2000, Dekker, New York,  
MR 1792377[25] Jordan, C.: 
Calculus of Finite Differences, 3rd edn. 1965, Chelsea, New York,  
MR 0183987[26] Kolmogorov, A.N., Fomin, S.V.: 
Introductory Real Analysis. Translated by R.A. Silverman. 1970, Dover Publications, New York,  
MR 0377445[27] Kwon, K.H., Lee, D.W., Park, S.B., Yoo, B.H.: 
Hahn class orthogonal polynomials. Kyungpook Math. J., 38, 1998, 259-281,  
MR 1665852[28] Lesky, P.A.: Eine Charakterisierung der klassischen kontinuierlichen, diskretenund $q$-Orthgonalpolynome. 2005, Shaker, Aachen, 
[30] Levitan, B.M., Sargsjan, I.S.: 
Sturm-Liouville and Dirac Operators. 1991, Springer,  
MR 1136037[31] Naimark, M.A.: 
Linear Differential Operators, 2nd edn., 1968. 1969, Nauka, Moscow, English translation of 1st edn..  
MR 0353061[32] Petronilho, J.: 
Generic formulas for the values at the singular points of some special monic classical $H_{q,\omega }$-orthogonal polynomials. J. Comput. Appl. Math., 205, 2007, 314-324,  
DOI 10.1016/j.cam.2006.05.005 | 
MR 2324843[33] Sitthiwirattham, T.: 
On a nonlocal boundary value problem for nonlinear second-order Hahn difference equation with two different $q,\omega $-derivatives. Adv. Difference Equat., 2016, 1, 2016, Article number 116.  
MR 3490997[35] Stone, M.H.: 
Linear Transformations in Hilbert Space and Their Application to Analysis. 1932, Amer. Math. Soc.,  
MR 1451877[36] Titchmarsh, E.C.: 
Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I. Second Edition. 1962, Clarendon Press, Oxford,  
MR 0176151[37] Weyl, H.: 
Über gewöhnlicke Differentialgleichungen mit Singuritaten und die zugehörigen Entwicklungen willkürlicher Funktionen. Math. Annal., 68, 1910, 220-269,  
DOI 10.1007/BF01474161 | 
MR 1511560[39] Yosida, K.: 
Lectures on Differential and Integral Equations. 1960, Springer, New York,  
MR 0118869