Previous |  Up |  Next


heterogeneous multi-agent systems (MASs); Markovian jumping system; Deny-of-Service (DoS) attack; output feedback control
In this paper, the consensus of heterogeneous multi-agent systems (MASs) with uncertain Deny-of-Service (DoS) attack strategies is studied. In our system, all agents are time synchronized and they communicate with each other with a constant sampling period normally. When the system is under attack, all agents use the hold-input mechanism to update the control protocol. By assuming that the attack duration is upper bounded and the occurrence of the attack follows a Markovian jumping process, the closed-loop system in presence of such a kind of random DoS attack is modeled as a Markovian jumping system, and the attack probabilities are allowed to be partially unknown and uncertain. By means of Lyapunov stability theory and Markovian jumping system approach, sufficient conditions are proposed such that the output consensus can be achieved, and the controller gains are determined by solving some matrix inequalities. Finally, a simulation study on the mobile stage vehicles is performed, showing the effectiveness of main results.
[1] Rockel, S., Klimentjew, D., Zhang, J.: A multi-robot platform for mobile robots: A novel evaluation and development approach with multi-agent technology. In: 2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 470-477. DOI 10.1109/mfi.2012.6343020
[2] Guo, F., Xu, Q., Wen, C., Wang, L., Wang, P.: Distributed secondary control for power allocation and voltage restoration in islanded DC microgrids. IEEE Trans. Sustainable Energy 9 (2018), 4, 1857-1869. DOI 10.1109/tste.2018.2816944
[3] Zheng, Y., Li, S., Li, K., Ren, W.: Platooning of connected vehicles with undirected topologies: Robustness analysis and distributed H-infinity controller synthesis. IEEE Trans. Intell. Transport. Systems 19 (2017), 5, 1353-1364. DOI 10.1109/tits.2017.2726038
[4] Qiu, Y., Xiang, L.: Distributed adaptive coordinated tracking for coupled non-holonomic mobile robots. IET Control Theory Appl. 8 (2014), 18, 2336-2345. DOI 10.1049/iet-cta.2014.0099 | MR 3289082
[5] Zhou, N., Xia, Y., Fu, M., Li, Y.: Distributed cooperative control design for finite-time attitude synchronisation of rigid spacecraft. IET Control Theory Appl. 9 (2015), 10, 1561-1570. DOI 10.1049/iet-cta.2014.0878 | MR 3381714
[6] Zhang, D., Shi, P., Zhang, W., Yu, L.: Energy-efficient distributed filtering in sensor networks: A unified switched system approach. IEEE Trans. Cybernet. 47 (2016), 7, 1618-1629. DOI 10.1109/tcyb.2016.2553043 | MR 3537173
[7] Wieland, P., Sepulchre, R., Allgöwer, F.: An internal model principle is necessary and sufficient for linear output synchronization. Automatica 47 (2011), 5, 1068-1074. DOI 10.1016/j.automatica.2011.01.081 | MR 2878379
[8] Wen, G., Chen, C., Liu, Y., Liu, Z.: Neural network-based adaptive leader-following consensus control for a class of nonlinear multiagent state-delay systems. IEEE Trans. Cybernet. 47 (2016), 8, 2151-2160. DOI 10.1109/tcyb.2016.2608499 | MR 3358409
[9] Hu, W., Yang, C.: Consensus of linear multi-agent systems by distributed dynamic event-triggered control. In: 2017 International Workshop on Complex Systems and Networks (IWCSN), pp. 284-289. DOI 10.1109/iwcsn.2017.8276540
[10] Ge, X., Han, Q.: Consensus of multiagent systems subject to partially accessible and overlapping Markovian network topologies. IEEE Trans. Cybernet. 47 (2016), 8, 1807-1819. DOI 10.1109/tcyb.2016.2570860
[11] Ning, B., Han, Q., Zuo, Z., Jin, J., Zheng, J.: Collective behaviors of mobile robots beyond the nearest neighbor rules with switching topology. IEEE Transactions on Cybernetics 48 (2018), 5, 1577-1590. DOI 10.1109/tcyb.2017.2708321
[12] Zuo, Z., Han, Q., Ning, B., Ge, X., Zhang, X.: An overview of recent advances in fixed-time cooperative control of multi-agent systems. IEEE Trans. Industr. Inform. 14 (2018), 6, 2322-2334. DOI 10.1109/tii.2018.2817248 | MR 3932129
[13] Zheng, Y., Ma, J., Wang, L.: Consensus of hybrid multi-agent systems. IEEE Trans. Neural Networks Learning Systems 29 (2017), 4, 1359-1365. DOI 10.1109/tits.2017.2726038
[14] Li, C., Liu, G.: Data-driven leader-follower output synchronization for networked non-linear multi-agent systems with switching topology and time-varying delays. J. Systems Sci. Complex. 31 (2018), 1, 87-102. DOI 10.1007/s11424-018-7269-7 | MR 3768972
[15] Wai, H., Yang, Z., Wang, Z., Hong, M.: Multi-agent reinforcement learning via double averaging primal-dual optimization. In: Advances in Neural Information Processing Systems (2018), pp. 9649-9660.
[16] Hashim, H., El-Ferik, S., Lewis, F.: Neuro-adaptive cooperative tracking control with prescribed performance of unknown higher-order nonlinear multi-agent systems. Int. J. Control 92 (2019), 2, 445-460. DOI 10.1080/00207179.2017.1359422 | MR 3938082
[17] Alfonso, G., Fernando, D., Mohd, M., Sigeru, O., Juan, C.: Multi-agent systems applications in energy optimization problems: A state-of-the-art review. Energies 11 (2018), 8, 1928. DOI 10.3390/en11081928
[18] Jia, H., Zhao, J.: Cooperative output regulation of heterogeneous multiagent systems based on event-triggered control with fixed and switching topologies. Int. J. Robust Nonlinear Control 28 (2018), 3, 838-858. DOI 10.1002/rnc.3904 | MR 3756903
[19] Shi, L., Shao, J., Cao, M., Xia, H.: Asynchronous group consensus for discrete-time heterogeneous multi-agent systems under dynamically changing interaction topologies. Inform. Sci. 463 (2018), 282-293. DOI 10.1016/j.ins.2018.06.044 | MR 3836724
[20] Zhang, D., Xu, Z., Feng, G., Li, H.: Asynchronous resilient output consensus of switched heterogeneous linear multivehicle systems with communication delay. IEEE/ASME Transactions on Mechatronics 24 (2019), 6, 2627-2640. DOI 10.1109/tmech.2019.2932322
[21] Zhang, D., Shi, P., Yu, L.: Containment Control of Linear Multiagent Systems with Aperiodic Sampling and Measurement Size Reduction. IEEE Trans. Neural Networks Learning Systems 29 (2018), 10, 5020-5029. DOI 10.1109/tnnls.2017.2784365 | MR 3875058
[22] Feng, Z., Hu, G., Wen, G.: Distributed consensus tracking for multi-agent systems under two types of attacks. Int. J. Robust Nonlinear Control 26 (2016), 5, 896-918. DOI 10.1002/rnc.3342 | MR 3456652
[23] Zhang, D., Feng, G.: A new switched system approach to leader-follower consensus of heterogeneous linear multiagent systems with DoS attack.
[24] Feng, Z., Hu, G.: Distributed secure average consensus for linear multi-agent systems under dos attacks. In: 2017 American Control Conference (ACC), pp. 2261-2266. DOI 10.23919/acc.2017.7963289
[25] Liu, Z., Guan, Z., Shen, X., Feng, G.: Consensus of multi-agent networks with aperiodic sampled communication via impulsive algorithms using position-only measurements. IEEE Trans. Automat. Control 57 (2012), 10, 2639-2643. DOI 10.1109/tac.2012.2214451 | MR 2991667
[26] Ge, X., Han, Q., Zhang, X.: Achieving cluster formation of multi-agent systems under aperiodic sampling and communication delays. IEEE Trans. Industr. Electron. 65 (2017), 4, 3417-3426. DOI 10.1109/tie.2017.2752148
[27] Liu, H., Cheng, L., Tan, M., Hou, Z.: Containment control of continuous-time linear multi-agent systems with aperiodic sampling. Automatica 57 (2015), 78-84. DOI 10.1016/j.automatica.2015.04.005 | MR 3350676
[28] Zhang, D., Shi, P., Wang, Q., Yu, L.: Analysis and synthesis of networked control systems: A survey of recent advances and challenges. ISA Trans. 66 (2017), 376-392. DOI 10.1016/j.isatra.2016.09.026 | MR 2808079
[29] Zhang, D., Xu, Z., Srinivasan, D., Yu, L.: Leader-follower consensus of multiagent systems with energy constraints: A Markovian system approach. IEEE Trans. Systems Man Cybernet.: Systems 47 (2017), 7, 1727-1736. DOI 10.1109/tsmc.2017.2677471
[30] Ni, H., Xu, Z., Zhang, D., Yu, L.: Output feedback control of heterogeneous multi-agent systems with stochastic sampled-data. 2017 Chinese Automation Congress (CAC) (2017), 2164-2169. DOI 10.1109/cac.2017.8243131
[31] Ni, H., Xu, Z., Cheng, J., Zhang, D.: Robust Stochastic Sampled-data-based Output Consensus of Heterogeneous Multi-agent Systems Subject to Random DoS Attack: A Markovian Jumping System Approach. Int. J. Control Automat. Systems 17 (2019), 7, 1687-1698. DOI 10.1007/s12555-018-0658-9
[32] Zhang, D., Liu, L., Feng, G.: Consensus of heterogeneous linear multiagent systems subject to aperiodic sampled-data and DoS attack. IEEE Trans. Cybernet. 49 (2019), 4, 1501-1511. DOI 10.1109/tcyb.2018.2806387
[33] Cheng, J., Wang, B., Park, J., Kang, W.: Sampled-data reliable control for T-S fuzzy semi-Markovian jump system and its application to single-link robot arm mode. IET Control Theory Appl. 11 (2017), 12, 1904-1912. DOI 10.1049/iet-cta.2016.1462 | MR 3726813
[34] Shen, H., Chen, M., Wu, Z., Cao, J., Park, J.: Reliable event-triggered asynchronous passive control for semi-Markov jump fuzzy systems and its application. IEEE Trans. Fuzzy Systems (2019). DOI 10.1109/tfuzz.2019.2921264
[35] Cheng, J., Park, J., Cao, J., Qi, W.: Hidden Markov model-based nonfragile state estimation of switched neural network with probabilistic quantized outputs. IEEE Trans. Cybernet. (2019), 1-10. DOI 10.1109/tcyb.2019.2909748
[36] Zhang, D., Shen, Y. P., Zhou, S. Q., Dong, X. W., Yu, L.: Distributed secure platoon control of connected vehicles subject to DoS attack: Theory and application. IEEE Trans. Systems Man Cybernet.: Systems (2020). DOI 10.1109/tsmc.2020.2968606
[37] Biron, Z. A., Dey, S., Pisu, P.: Real-time detection and estimationof denial of service attack in connected vehicle systems. IEEE Trans. Intell. Transport. Systems 19 (2018), 12, 3893-3902. DOI 10.1109/tits.2018.2791484
[38] Feng, Z., Wen, G., Hu, G.: Distributed secure coordinated control for multiagent systems under strategic attacks. IEEE Trans. Cybernet. 47 (2017), 5, 1273-1284. DOI 10.1109/tcyb.2016.2544062
[39] Jiao, Q., Modares, H., Lewis, F., Xu, S., Xie, L.: Distributed L2-gain output-feedback control of homogeneous and heterogeneous systems. Automatica 71 (2016), 361-368. DOI 10.1016/j.automatica.2016.04.025 | MR 3521989
[40] Zhao, Y., Zhang, L., Shen, S., Gao, H.: Robust stability criterion for discrete-time uncertain Markovian jumping neural networks with defective statistics of modes transitions. IEEE Trans. Neural Networks 22 (2010), 1, 164-170. DOI 10.1109/tnn.2010.2093151
[41] Su, Y., Xu, L., Wang, X., Xu, D.: Event-based cooperative global practical output regulation of multi-agent systems with nonlinear leader. Automatica 107 (2019), 600-604. DOI 10.1016/j.automatica.2019.06.008 | MR 3988648
[42] Peng, C., Zhang, J., Han, Q.: Consensus of multiagent systems with nonlinear dynamics using an integrated sampled-data-based event-triggered communication scheme. IEEE Trans. Systems Man Cybernet.: Systems 49 (2018), 3, 589-599. DOI 10.1109/tsmc.2018.2814572
[43] Wu, Z., Xu, Y., Pan, Y., Su, H., Tang, Y.: Event-triggered control for consensus problem in multi-agent systems with quantized relative state measurements and external disturbance. IEEE Trans. Circuits Systems I: Regular Papers 65 (2018), 7, 2232-2242. DOI 10.1109/tcsi.2017.2777504 | MR 3815370
Partner of
EuDML logo