Previous |  Up |  Next

Article

Title: Lanczos-like algorithm for the time-ordered exponential: The $\ast $-inverse problem (English)
Author: Giscard, Pierre-Louis
Author: Pozza, Stefano
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 65
Issue: 6
Year: 2020
Pages: 807-827
Summary lang: English
.
Category: math
.
Summary: The time-ordered exponential of a time-dependent matrix $\mathsf {A}(t)$ is defined as the function of $\mathsf {A}(t)$ that solves the first-order system of coupled linear differential equations with non-constant coefficients encoded in $\mathsf {A}(t)$. The authors have recently proposed the first Lanczos-like algorithm capable of evaluating this function. This algorithm relies on inverses of time-dependent functions with respect to a non-commutative convolution-like product, denoted by $\ast $. Yet, the existence of such inverses, crucial to avoid algorithmic breakdowns, still needed to be proved. Here we constructively prove that $\ast $-inverses exist for all non-identically null, smooth, separable functions of two variables. As a corollary, we partially solve the Green's function inverse problem which, given a distribution $G$, asks for the differential operator whose fundamental solution is $G$. Our results are abundantly illustrated by examples. (English)
Keyword: time-ordering
Keyword: matrix differential equation
Keyword: time-ordered exponential
Keyword: Lanczos algorithm
Keyword: fundamental solution
MSC: 35A24
MSC: 47B36
MSC: 65D15
MSC: 65F10
idZBL: Zbl 07285958
idMR: MR4191370
DOI: 10.21136/AM.2020.0342-19
.
Date available: 2020-11-18T09:39:39Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148398
.
Reference: [1] Benner, P., Cohen, A., Ohlberger, M., (eds.), K. Willcox: Model Reduction and Approximation: Theory and Algorithms.Computational Science & Engineering 15. SIAM, Philadelphia (2017). Zbl 1378.65010, MR 3672144, 10.1137/1.9781611974829
Reference: [2] Blanes, S.: High order structure preserving explicit methods for solving linear-quadratic optimal control problems.Numer. Algorithms 69 (2015), 271-290. Zbl 1317.65144, MR 3350382, 10.1007/s11075-014-9894-0
Reference: [3] Bouhamidi, A.: Pseudo-differential operator associated to the radial basis functions under tension.ESAIM, Proc. 20 (2007), 72-82. Zbl 1359.35233, MR 2402761, 10.1051/proc:072007
Reference: [4] Corless, M. J., Frazho, A. E.: Linear Systems and Control: An Operator Perspective.Pure and Applied Mathematics, Marcel Dekker 254. Marcel Dekker, New York (2003). Zbl 1050.93001, 10.1201/9780203911372
Reference: [5] Fasshauer, G. E., Ye, Q.: Reproducing kernels of Sobolev spaces via a Green kernel approach with differential operators and boundary operators.Adv. Comput. Math. 38 (2013), 891-921. Zbl 1267.41018, MR 3044643, 10.1007/s10444-011-9264-6
Reference: [6] Giscard, P.-L.: On the solutions of linear Volterra equations of the second kind with sum kernels.(to appear) in J. Integral Equations Appl. Available at https://arxiv.org/abs/1909.04033v2 (2020), 25 pages.
Reference: [7] Giscard, P.-L., Lui, K., Thwaite, S. J., Jaksch, D.: An exact formulation of the time-ordered exponential using path-sums.J. Math. Phys. 56 (2015), Article ID 053503, 18 pages. Zbl 1316.15010, MR 3391006, 10.1063/1.4920925
Reference: [8] Giscard, P.-L., Pozza, S.: Lanczos-like method for the time-ordered exponential.Available at https://arxiv.org/abs/1909.03437 (2019), 26 pages. MR 4191370
Reference: [9] Giscard, P.-L., Pozza, S.: Tridiagonalization of systems of coupled linear differential equations with variable coefficients by a Lanczos-like method.Available at https://arxiv.org/abs/2002.06973 (2020), 23 pages.
Reference: [10] Golub, G. H., Meurant, G.: Matrices, moments and quadrature.Numerical Analysis 1993 Pitman Research Notes in Mathematics Series 303. Longman Scientific & Technical, Harlow (1994), 105-156. Zbl 0795.65019, MR 1267758
Reference: [11] Golub, G. H., Meurant, G.: Matrices, Moments and Quadrature With Applications.Princeton Series in Applied Mathematics 30. Princeton University Press, Princeton (2010). Zbl 1217.65056, MR 2582949, 10.1515/9781400833887
Reference: [12] Gripenberg, G., Londen, S.-O., Staffans, O.: Volterra Integral and Functional Equations.Encyclopedia of Mathematics and Its Applications 34. Cambridge University Press, Cambridge (1990). Zbl 0695.45002, MR 1050319, 10.1017/CBO9780511662805
Reference: [13] Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems.Wiley-Interscience, New York (1972). Zbl 0276.93001, MR 0406607
Reference: [14] Liesen, J., Strakoš, Z.: Krylov Subspace Methods: Principles and Analysis.Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013). Zbl 1307.65001, MR 3024841, 10.1093/acprof:oso/9780199655410.001.0001
Reference: [15] Linz, P.: Analytical and Numerical Methods for Volterra Equations.SIAM Studies in Applied Mathematics 7. SIAM, Philadelphia (1985). Zbl 0566.65094, MR 0796318, 10.1137/1.9781611970852
Reference: [16] Mehring, M., Weberruss, V. A.: Object-Oriented Magnetic Resonance: Classes and Objects, Calculations and Computations.Academic Press, London (2012). 10.1016/C2009-0-21093-2
Reference: [17] Polyanin, A. D., Manzhirov, A. V.: Handbook of Integral Equations.Chapman & Hall/CRC Press, Boca Raton (2008). Zbl 1154.45001, MR 2404728, 10.1201/9781420010558
Reference: [18] Razdolsky, L.: Integral Volterra equations.Probability Based High Temperature Engineering Springer, Cham (2017), 55-100. 10.1007/978-3-319-41909-1_2
Reference: [19] Reid, W. T.: Riccati matrix differential equations and non-oscillation criteria for associated linear differential systems.Pac. J. Math. 13 (1963), 665-685. Zbl 0119.07401, MR 0155049, 10.2140/pjm.1963.13.665
Reference: [20] Rivas, Á., Huelga, S. F.: Open Quantum Systems: An Introduction.SpringerBriefs in Physics. Springer, Berlin (2012). Zbl 1246.81006, MR 2848650, 10.1007/978-3-642-23354-8
Reference: [21] Saad, Y.: Iterative Methods for Sparse Linear Systems.SIAM, Philadelphia (2003). Zbl 1031.65046, MR 1990645, 10.1137/1.9780898718003
Reference: [22] Schwartz, L.: Théorie des distributions.Publications de l'Institut de Mathématique de l'Université de Strasbourg IX-X. Hermann, Paris (1966), French. Zbl 0149.09501, MR 0209834
Reference: [23] Sezer, M.: Taylor polynomial solutions of Volterra integral equations.Int. J. Math. Educ. Sci. Technol. 25 (1994), 625-633. Zbl 0823.45005, MR 1295324, 10.1080/0020739940250501
Reference: [24] Tricomi, F. G.: Integral Equations.Dover Publications, New York (1985). Zbl 0078.09404, MR 0809184
.

Files

Files Size Format View
AplMat_65-2020-6_6.pdf 348.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo