[1] Bakhturin, Yu.A., Semenov, K.N.: 
On the finite approximability of solvable varieties of Lie algebras. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 6, 1986, 59-61, Lomonosov Moscow State University, English transl. in Moscow University Mathematics Bulletin 41 (1986), 49-51.  
MR 0872075[3] Bloh, A.: 
On a generalization of Lie algebra notion. USSR Doklady, 165, 3, 1965, 471-473,  
MR 0193114[4] Dallmer, E.: 
On Lie algebras all nilpotent subalgebras of which are Abelian. Journal of Mathematical Physics, 40, 8, 1999, 4151-4156, American Institute of Physics,  
MR 1702410[5] Drenski, V.S.: 
Solvable Lie $A$-algebras. Serdica, 9, 1983, 132-135,  
MR 0731837[6] Jacobson, N.: 
Lie Algebras. 1962, Interscience Publishers, New York-London, Interscience Tracts on Pure and Applied Mathematics, no. 10.  
MR 0143793 | 
Zbl 0121.27504[7] Loday, J.L.: 
Une version non commutative des algèbres de Lie: les algèbres de Leibniz. L'Enseignement Mathématique, 39, 3-4, 1993, 269-293,  
MR 1252069[8] Loday, J.-L., Pirashvili, T.: 
Universal enveloping algebras of Leibniz algebras and (co)homology. Mathematische Annalen, 296, 1, 1993, 139-158, Springer-Verlag,  
DOI 10.1007/BF01445099 | 
MR 1213376[9] Premet, A.A.: 
Inner ideals in modular Lie algebras. Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk, 5, 1986, 11-15,  
MR 0876665[12] Ray, C.B., Bosko-Dunbar, L., Hedges, A., Hird, J.T., Stagg, K., Stitzinger, E.: 
A Frattini theory for Leibniz algebras. Communications in Algebra, 41, 4, 2013, 1547-1557, Taylor & Francis,  
DOI 10.1080/00927872.2011.643844 | 
MR 3044424[13] Ray, C.B., Combs, A., Gin, N., Hedges, A., Hird, J.T., Zack, L.: 
Nilpotent Lie and Leibniz algebras. Communications in Algebra, 42, 6, 2014, 2404-2410, Taylor & Francis,  
DOI 10.1080/00927872.2012.717655 | 
MR 3169714[14] Schafer, R.D.: 
An introduction to nonassociative algebras (Pure & Applied Mathematics). 1966, Academic Press, New York,  
MR 0210757[15] Semenov, K.N.: 
Conditions for a variety and a quasivariety generated by a finite Lie algebra to coincide (Russian. English, Russian summaries), Abelian Groups and modules. Abelian Groups and modules, Tomsk. Gos. Univ. Tomsk, 10, 1991, 134-138,  
MR 1197373[16] Sheina, G.V.: 
Varieties of metabelian Lie $A$-algebras. I. Vestnik Moskov. Univ. Ser. I Mat. Mekh., 4, 1977, 37-46, English transl. in Moscow University Mathematics Bulletin 32 (1977), 28-35..  
MR 0486027[17] Sheina, G.V.: 
Varieties of metabelian Lie $A$-algebras. II. Vestnik Moskov. Univ. Ser. I Mat. Mekh., 3, 1978, 52-59, English transl. in Moscow University Mathematics Bulletin 33 (1978), 48-54..  
MR 0486028[18] Sheina, G.V.: 
Metabelian varieties Lie $A$-algebras. Russian. Uspekhi Matematicheskikh Nauk, 33, 1978, 209-210,  
MR 0486029[22] Towers, D.A., Varea, V.R.: 
Further results on elementary Lie algebras and Lie $A$-algebras. Communications in Algebra, 41, 4, 2013, 1432-1441, Taylor & Francis,  
DOI 10.1080/00927872.2011.643667 | 
MR 3044418[23] Winter, D.J.: 
Abstract Lie Algebras. 1972, M.I.T. Press, Cambridge, Mass.,  
MR 0332905