[1] Bloch, A.: 
A generalization of the concept of a Lie algebra. Doklady Akademii Nauk -- Russian Academy of Sciences, 165, 3, 1965, 471-473,  
MR 0193114[2] Bremner, M.R., Dotsenko, V.: Bilinear operations in the diassociative operad. preprint. 
[3] Demir, I., Misra, K.C., Stitzinger, E.: 
On some structures of Leibniz algebras. Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics, Contemporary Mathematics, 623, 2014, 41-54,  
MR 3288621[5] Loday, J.-L.: 
Une version non commutative des algébres de Lie: Les algébres de Leibniz. L'Enseignement Mathématique, 39, 2, 1993, 269-293,  
MR 1252069[6] Loday, J.-L.: 
Algébres ayant deux opérations associatives: les digébres. Comptes rendus de l'Académie des Sciences, 321, 1995, 141-146,  
MR 1345436[7] Loday, J.-L., Pirashvili, T.: 
Universal enveloping algebras of Leibniz algebras and (co)-homology. Mathematische Annalen, 296, 1, 1993, 139-158, Springer-Verlag,  
DOI 10.1007/BF01445099 | 
MR 1213376[8] Loday, J.-L.: 
Dialgebras. 2001, 7-66, Springer-Verlag, Berlin, Chapter in: Dialgebras and related operads, Lecture Notes in Mathematics, Vol. 1763, J.-L. Loday, F. Chapoton, F. Goichot, and A. Frabetti.  
DOI 10.1007/b80864 | 
MR 1860994