[1] Abdelwahab, H., Calderón, A.J., Kaygorodov, I.: 
The algebraic and geometric classification of nilpotent binary Lie algebras. International Journal of Algebra and Computation, 29, 6, 2019, 1113-1129,  
DOI 10.1142/S0218196719500437 | 
MR 3996987[3] Alvarez, M.A.: The variety of $7$-dimensional $2$-step nilpotent Lie algebras. Symmetry, 10, 1, 2018, 26, Multidisciplinary Digital Publishing Institute, 
[4] Burde, D., Fialowski, A.: 
Jacobi--Jordan algebras. Linear Algebra and its Applications, 459, 2014, 586-594, Elsevier,  
MR 3247244[5] Burde, D., Steinhoff, C.: 
Classification of orbit closures of $4$-dimensional complex Lie algebras. Journal of Algebra, 214, 2, 1999, 729-739, Academic Press,  
DOI 10.1006/jabr.1998.7714 | 
MR 1680532[6] Cicalò , S., Graaf, W. De, Schneider, C.: 
Six-dimensional nilpotent Lie algebras. Linear Algebra and its Applications, 436, 1, 2012, 163-189, Elsevier,  
DOI 10.1016/j.laa.2011.06.037 | 
MR 2859920[7] Darijani, I., Usefi, H.: 
The classification of 5-dimensional p-nilpotent restricted Lie algebras over perfect fields, I. Journal of Algebra, 464, 2016, 97-140, Elsevier,  
DOI 10.1016/j.jalgebra.2016.06.011 | 
MR 3533425[9] Graaf, W.A. De: 
Classification of nilpotent associative algebras of small dimension. International Journal of Algebra and Computation, 28, 01, 2018, 133-161, World Scientific,  
MR 3768261[10] Ouaridi, A. Fernandez, Kaygorodov, I., Khrypchenko, M., Yu. Volkov: Degenerations of nilpotent algebras. arXiv:1905.05361. 
[11] Gorshkov, I., Kaygorodov, I., Khrypchenko, M.: 
The geometric classification of nilpotent Tortkara algebras. Communications in Algebra, 48, 1, 2020, 204-209, Taylor & Francis,  
DOI 10.1080/00927872.2019.1635612 | 
MR 4060024[14] Hegazi, A.S., Abdelwahab, H.: 
Classification of five-dimensional nilpotent Jordan algebras. Linear Algebra and its Applications, 494, 2016, 165-218, Elsevier,  
DOI 10.1016/j.laa.2016.01.015 | 
MR 3455692[15] Hegazi, A.S., Abdelwahab, H., Martin, A.J. Calderon: 
The classification of $N$-dimensional non-Lie Malcev algebras with $(N-4)$-dimensional annihilator. Linear Algebra and its Applications, 505, 2016, 32-56, Elsevier,  
DOI 10.1016/j.laa.2016.04.029 | 
MR 3506483[16] Ismailov, N., Kaygorodov, I., Mashurov, F.: 
The algebraic and geometric classification of nilpotent assosymmetric algebras. Algebras and Representation Theory, 2020, 14 pp, Springer, DOI: 10.1007/s10468-019-09935-y.  
DOI 10.1007/s10468-019-09935-y | 
MR 4207393[17] Ismailov, N., Kaygorodov, I., Yu. Volkov: 
The geometric classification of Leibniz algebras. International Journal of Mathematics, 29, 05, 2018, Article 1850035, World Scientific,  
DOI 10.1142/S0129167X18500350 | 
MR 3808051[18] Ismailov, N., Kaygorodov, I., Yu. Volkov: 
Degenerations of Leibniz and anticommutative algebras. Canadian Mathematical Bulletin, 62, 3, 2019, 539-549, Canadian Mathematical Society,  
DOI 10.4153/S0008439519000018 | 
MR 3998738[19] Karimjanov, I., Kaygorodov, I., Khudoyberdiyev, A.: 
The algebraic and geometric classification of nilpotent Novikov algebras. Journal of Geometry and Physics, 143, 2019, 11-21, Elsevier,  
DOI 10.1016/j.geomphys.2019.04.016 | 
MR 3954151[20] Kaygorodov, I., Khrypchenko, M., Lopes, S.: 
The algebraic and geometric classification of nilpotent anticommutative algebras. Journal of Pure and Applied Algebra, 224, 8, 2020, Article 106337,  
MR 4074577[21] Kaygorodov, I., Yu. Popov, Yu. Volkov: 
Degenerations of binary Lie and nilpotent Malcev algebras. Communications in Algebra, 46, 11, 2018, 4928-4940, Taylor & Francis,  
DOI 10.1080/00927872.2018.1459647 | 
MR 3864274[22] Kaygorodov, I., Yu. Volkov: 
The Variety of Two-dimensional Algebras Over an Algebraically Closed Field. Canadian Journal of Mathematics, 71, 4, 2019, 819-842, Canadian Mathematical Society,  
DOI 10.4153/S0008414X18000056 | 
MR 3984022[25] Ren, B., Zhu, L.S.: 
Classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center. Czechoslovak Mathematical Journal, 67, 4, 2017, 953-965, Springer,  
DOI 10.21136/CMJ.2017.0253-16 | 
MR 3736011[26] Seeley, C.: 
Degenerations of 6-dimensional nilpotent Lie algebras over $\mathbb {C}$. Communications in Algebra, 18, 10, 1990, 3493-3505, Taylor & Francis,  
DOI 10.1080/00927879008824088 | 
MR 1063991[27] Skjelbred, T., Sund, T.: 
Sur la classification des algèbres de Lie nilpotentes. Comptes rendus de l'Académie des Sciences, 286, 5, 1978, A241-A242,  
MR 0498734[28] Zhevlakov, K.A.: 
Solvability and nilpotency of Jordan rings. Algebra i Logika, 5, 3, 1966, 37-58,  
MR 0207786