[1] Alekseevskiĭ, D.V., Gamkrelidze, R.V., Lychagin, V.V., Vinogradov, A.M.: 
Geometry I: Basic ideas and concepts of differential geometry. 1, 1991, Springer, Berlin, Encyclopaedia Math. Sci. 28.  
MR 1300019[2] Benito, P., Draper, C., Elduque, A.: 
On some algebras related to simple Lie triple systems. Journal of Algebra, 219, 1, 1999, 234-254, Elsevier,  
DOI 10.1006/jabr.1999.7877 | 
MR 1707670[3] Benito, P., Draper, C., Elduque, A.: 
Lie-Yamaguti algebras related to $\mathfrak {g}_{2}$. Journal of Pure and Applied Algebra, 202, 1--3, 2005, 22-54, Elsevier,  
DOI 10.1016/j.jpaa.2005.01.003 | 
MR 2163399[4] Benito, P., Elduque, A., Martín-Herce, F.: 
Irreducible Lie-Yamaguti algebras. Journal of Pure and Applied Algebra, 213, 5, 2009, 795-808, Elsevier,  
DOI 10.1016/j.jpaa.2008.09.003 | 
MR 2494372[5] Benito, P., Elduque, A., Martín-Herce, F.: 
Irreducible Lie-Yamaguti algebras of generic type. Journal of Pure and Applied Algebra, 215, 2, 2011, 108-130, Elsevier,  
DOI 10.1016/j.jpaa.2010.04.003 | 
MR 2720677[6] Burde, D.: 
Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Central European Journal of Mathematics, 4, 3, 2006, 323-357, Springer,  
DOI 10.2478/s11533-006-0014-9 | 
MR 2233854[7] Conlon, L.: 
Differentiable manifolds, Second edition. 2001, Birkhäuser, Boston, MA,  
MR 1821549[8] Draper, C., Garvín, A., Palomo, F.J.: 
Invariant affine connections on odd-dimensional spheres. Annals of Global Analysis and Geometry, 49, 3, 2016, 213-251, Springer,  
DOI 10.1007/s10455-015-9489-6 | 
MR 3485984[9] Elduque, A., Kochetov, M.: 
Gradings on simple Lie algebras. 189, 2013, American Mathematical Soc.,  
MR 3087174[11] Elduque, A., Myung, H.C.: 
The reductive pair $(B_3,G_2)$ and affine connections on $S^7$. Journal of Pure and Applied Algebra, 86, 2, 1993, 155-171, Elsevier,  
DOI 10.1016/0022-4049(93)90100-8 | 
MR 1215643[12] Elduque, A., Myung, H.C.: 
The reductive pair $(B_{4}, B_{3})$ and affine connections on $S^{15}$. Journal of Algebra, 227, 2, 2000, 504-531, Academic Press,  
MR 1759833[13] Kinyon, M.K., Weinstein, A.: 
Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces. American Journal of Mathematics, 123, 3, 2001, 525-550, Johns Hopkins University Press,  
DOI 10.1353/ajm.2001.0017 | 
MR 1833152[14] Kobayashi, S., Nomizu, K.: 
Foundations of differential geometry I. 1, 2, 1963, Interscience Publishers, New York-London,  
MR 0152974 | 
Zbl 0119.37502[15] Kobayashi, S., Nomizu, K.: 
Foundations of differential geometry II. 1, 2, 1969, Interscience Publishers, New York-London-Sidney,  
MR 0238225[18] Medina, P.A.: 
Flat left-invariant connections adapted to the automorphism structure of a Lie group. Journal of Differential Geometry, 16, 3, 1981, 445-474, Lehigh University,  
MR 0654637[19] Myung, H.C.: 
Malcev-admissible algebras. 1986, Birkhäuser Boston, Inc., Boston, MA, Progress in Mathematics, 64.  
MR 0885089[20] Nagai, S.: 
The classification of naturally reductive homogeneous real hypersurfaces in complex projective space. Archiv der Mathematik, 69, 6, 1997, 523-528, Springer,  
DOI 10.1007/s000130050155 | 
MR 1480520[21] Nomizu, K.: 
Invariant affine connections on homogeneous spaces. American Journal of Mathematics, 76, 1, 1954, 33-65, JSTOR,  
DOI 10.2307/2372398 | 
MR 0059050[23] Vinberg, E.B.: 
Invariant linear connections in a homogeneous space. Trudy Moskovskogo Matematicheskogo Obshchestva, 9, 1960, 191-210, Moscow Mathematical Society,  
MR 0176418[25] Warner, F.W.: 
Foundations of differentiable manifolds and Lie groups. 1983, Springer-Verlag, New York-Berlin, Corrected reprint of the 1971 edition. Graduate Texts in Mathematics 94.  
MR 0722297[26] Yamaguti, K.: 
On the Lie triple system and its generalization. Journal of Science of the Hiroshima University, Series A (Mathematics, Physics, Chemistry), 21, 3, 1958, 155-160, Hiroshima University, Department of Mathematics,  
MR 0100047