[1] Allison, B.: 
A class of nonassociative algebras with involution containing the class of Jordan algebras. Mathematische Annalen, 237, 2, 1978, 133-156,  
DOI 10.1007/BF01351677 | 
MR 0507909[4] Martín, A. Calderón, Ouaridi, A. Fernández, Kaygorodov, I.: 
The classification of $2$-dimensional rigid algebras. Linear and Multilinear Algebra, 68, 4, 2020, 828-844,  
DOI 10.1080/03081087.2018.1519009 | 
MR 4072782[5] Cantarini, N., Kac, V.: 
Classification of linearly compact simple rigid superalgebras. International Mathematics Research Notices, 17, 2010, 3341-3393,  
MR 2680276[8] Jacobson, N.: 
Structure and Representations of Jordan Algebras. 1969, American Mathematical Society, Providence, R.I,  
MR 0251099[10] Kantor, I.: 
Graded Lie algebras (Russian). Trudy Seminara po Vektornomu i Tenzornomu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike, 15, 1970, 227-266,  
MR 0297827[11] Kantor, I.: 
Certain generalizations of Jordan algebras (Russian). Trudy Seminara po Vektornomu i Tenzornomu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike, 16, 1972, 407-499,  
MR 0321986[12] Kantor, I.: 
A universal graded Lie superalgebra (Russian). Trudy Seminara po Vektornomu i Tenzornomu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike, 20, 1981, 162-175,  
MR 0622014[14] Kantor, I.: 
Some problems in $\mathfrak {L}$-functor theory (Russian). Algebra and Logic, 16, 1989, 54-75,  
MR 1043625[18] Kaygorodov, I., Khrypchenko, M., Popov, Yu.: 
The algebraic and geometric classification of nilpotent terminal algebras. arXiv:1909.00358, 2019,  
MR 4173993[19] Kaygorodov, I., Khudoyberdiyev, A., Sattarov, A.: 
One generated nilpotent terminal algebras. Communications in Algebra, 48, 10, 2020, 4355-4390,  
DOI 10.1080/00927872.2020.1761979 | 
MR 4127122[20] Kaygorodov, I., Lopatin, A., Popov, Yu.: 
Conservative algebras of $2$-dimensional algebras. Linear Algebra and its Applications, 486, 2015, 255-274,  
DOI 10.1016/j.laa.2015.08.011 | 
MR 3401761[21] Kaygorodov, I., Popov, Yu., Pozhidaev, A.: 
The universal conservative superalgebra. Communications in Algebra, 47, 10, 2019, 4064-4074,  
DOI 10.1080/00927872.2019.1576189 | 
MR 3975987[22] Kaygorodov, I., Volkov, Yu.: 
Conservative algebras of $2$-dimensional algebras, II. Communications in Algebra, 45, 8, 2017, 3413-3421,  
MR 3609349[23] Loos, O.: 
Jordan Pairs, Lecture Notes in Mathematics. 1975, Springer Verlag, Berlin,  
MR 0444721[25] Meyberg, K.: 
Lectures on Algebras and Triple Systems. 1972, Lecture notes, University of Virginia, Charlottesville,  
MR 0340353