[1] Baird, P., Fardoun, A., Ouakkas, S.: 
Conformal and semi-conformal biharmonic maps. Annals of Global Analysis and Geometry, 34, 4, 2008, 403-414, Springer,  
DOI 10.1007/s10455-008-9118-8 | 
MR 2447908[2] Baird, P., Kamissoko, D.: 
On constructing biharmonic maps and metrics. Annals of Global Analysis and Geometry, 23, 1, 2003, 65-75, Springer,  
DOI 10.1023/A:1021213930520 | 
MR 1952859[3] Baird, P., Wood, J.C.: 
Harmonic morphisms between Riemannian manifolds. 29, 2003, Oxford University Press,  
MR 2044031[4] Benkartab, A., Cherif, A.M.: 
New methods of construction for biharmonic maps. Kyungpook Mathematical Journal, 59, 1, 2019, 135-147, Department of Mathematics, Kyungpook National University,  
MR 3946694[5] Caddeo, R., Montaldo, S., Oniciuc, C.: 
Biharmonic submanifolds of $\mathbb {S}^{3}$. International Journal of Mathematics, 12, 08, 2001, 867-876, World Scientific,  
MR 1863283[9] K{ö}rpinar, T., Turhan, E.: 
Tubular surfaces around timelike biharmonic curves in Lorentzian Heisenberg group $\operatorname {Heis}^3$. Analele Universitatii ``Ovidius" Constanta -- Seria Matematica, 20, 1, 2012, 431-446, Sciendo,  
MR 2928433[12] Jiang, G.Y.: 
2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A, 7, 4, 1986, 389-402,  
MR 0886529[13] O'Neill, B.: 
Semi-Riemannian geometry with applications to relativity. 1983, Academic Press,  
MR 0719023[14] Sakai, T.: 
Riemannian geometry. 1992, Shokabo, Tokyo, (in Japanese).  
MR 1390760