[1] Agarwal, R.P., O'Regan, D., Saker, S.H.: 
Dynamic Inequalities on Time Scales. 2014, Springer International Publishing, Cham, Switzerland,  
MR 3307947[2] Ammi, M.R.S., Torres, D.F.M.: 
Hölder's and Hardy's two dimensional diamond-alpha inequalities on time scales. Ann. Univ. Craiova, Math. Comp. Sci. Series, 37, 1, 2010, 1-11,  
MR 2609350[3] Anderson, D., Bullock, J., Erbe, L., Peterson, A., Tran, H.: 
Nabla dynamic equations on time scales. Panam. Math. J., 13, 1, 2003, 1-48,  
MR 1953216[4] Beckenbach, E.F., Bellman, R.: 
Inequalities. 1961, Springer, Berlin, Göttingen and Heidelberg,  
MR 0158038[5] Bellman, R.: 
Notes on matrix theory -- IV (An inequality due to Bergström). Amer. Math. Monthly, 62, 3, 1955, 172-173,  
DOI 10.2307/2306621 | 
MR 0072834[6] Bergström, H.: 
A triangle inequality for matrices. In Den Elfte Skandinaviske Matematikerkongress (1949) Trondheim, Johan Grundt Tanums Forlag, Oslo, 1952, 264-267,  
MR 0053064[7] Bohner, M., Peterson, A.: 
Dynamic Equations on Time Scales. 2001, Birkhäuser Boston, Inc., Boston, MA,  
MR 1843232 | 
Zbl 0993.39010[8] Bohner, M., Peterson, A.: 
Advances in Dynamic Equations on Time Scales. 2003, Birkhäuser Boston, Boston, MA,  
MR 1843232 | 
Zbl 1025.34001[9] Bătineţu-Giurgiu, D.M., Pop, O.T.: 
A generalization of Radon's inequality. Creative Math. & Inf., 19, 2, 2010, 116-121,  
MR 2761455[10] Bătineţu-Giurgiu, D.M., Stanciu, N.: 
New generalizations and new approaches for two IMO problems. Journal of Science and Arts, 12, 1, 2012, 25-34,  
MR 2911825[11] Bătineţu-Giurgiu, D.M., Mărghidanu, D., Pop, O.T.: 
A refinement of a Radon type inequality. Creat. Math. Inform., 27, 2, 2018, 115-122,  
DOI 10.37193/CMI.2018.02.03 | 
MR 3885356[12] Hardy, G.H., Littlewood, J.E., Pölya, G.: 
Inequalities. 1952, 2nd Ed., Cambridge, University Press,  
MR 0046395[13] Hilger, S.: 
Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. 1988, Ph.D. Thesis, Universität Würzburg,  
Zbl 0695.34001[14] Hölder, O.: Über einen Mittelwertsatz. Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg\-Augusts-Universität zu Göttingen, 1889, 38-47, 
[15] Mitrinović , D.S.: 
Analytic Inequalities. 1970, Springer-Verlag, Berlin,  
MR 0274686[16] Radon, J.: Theorie und Anwendungen der absolut additiven Mengenfunktionen. Sitzungsber. Acad. Wissen. Wien, 122, 1913, 1295-1438, 
[17] Sahir, M.J.S.: 
Hybridization of classical inequalities with equivalent dynamic inequalities on time scale calculus. The Teaching of Mathematics, XXI, 1, 2018, 38-52,  
MR 3782912[19] Sheng, Q., Fadag, M., Henderson, J., Davis, J.M.: 
An exploration of combined dynamic derivatives on time scales and their applications. Nonlinear Analysis: Real World Appl., 7, 3, 2006, 395-413,  
DOI 10.1016/j.nonrwa.2005.03.008 | 
MR 2235865