[3] Agarwal, R. P., Bohner, M., Li, T., Zhang, C.: 
Even-order half-linear advanced differential equations: Improved criteria in oscillatory and asymptotic properties. Appl. Math. Comput. 266 (2015), 481-490. 
DOI 10.1016/j.amc.2015.05.008 | 
MR 3377575 | 
Zbl 1410.34191[11] Chatzarakis, G. E., Grace, S. R., Jadlovská, I., Li, T., Tunç, E.: 
Oscillation criteria for third-order Emden-Fowler differential equations with unbounded neutral coefficients. Complexity 2019 (2019), Article ID 5691758, 7 pages. 
DOI 10.1155/2019/5691758 | 
Zbl 1429.34071[12] Chatzarakis, G. E., Jadlovská, I.: 
Improved oscillation results for second-order half-linear delay differential equations. Hacet. J. Math. Stat. 48 (2019), 170-179. 
DOI 10.15672/hjms.2017.522 | 
MR 3976169[14] Džurina, J., Grace, S. R., Jadlovská, I., Li, T.: 
Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term. Math. Nachr. 293 (2020), 910-922. 
DOI 10.1002/mana.201800196 | 
MR 4100546 | 
Zbl 07206438[15] Grace, S. R., Džurina, J., Jadlovská, I., Li, T.: 
An improved approach for studying oscillation of second-order neutral delay differential equations. J. Inequal. Appl. 2018 (2018), Article ID 193, 11 pages. 
DOI 10.1186/s13660-018-1767-y | 
MR 3833834[17] Karpuz, B., Santra, S. S.: 
Oscillation theorems for second-order nonlinear delay differential equations of neutral type. Hacet. J. Math. Stat 48 (2019), 633-643. 
DOI 10.15672/HJMS.2017.542 | 
MR 3974570[20] Li, T., Rogovchenko, Y. V.: 
Oscillation theorems for second-order nonlinear neutral delay differential equations. Abstr. Appl. Anal. 2014 (2014), Article ID 594190, 5 pages. 
DOI 10.1155/2014/594190 | 
MR 3226209 | 
Zbl 07022675[23] Pinelas, S., Santra, S. S.: 
Necessary and sufficient condition for oscillation of nonlinear neutral first-order differential equations with several delays. J. Fixed Point Theory Appl. 20 (2018), Article ID 27, 13 pages. 
DOI 10.1007/s11784-018-0506-9 | 
MR 3761383 | 
Zbl 1387.34095[25] Santra, S. S.: 
Existence of positive solution and new oscillation criteria for nonlinear first-order neutral delay differential equations. Differ. Equ. Appl. 8 (2016), 33-51. 
DOI 10.7153/dea-08-03 | 
MR 3462235 | 
Zbl 1337.34071[26] Santra, S. S.: 
Oscillation analysis for nonlinear neutral differential equations of second order with several delays. Mathematica 59 (2017), 111-123. 
MR 3937284 | 
Zbl 07101431