[1] Bicknell, M.: 
A primer on the Pell sequence and related sequences. Fibonacci Q. 13 (1975), 345-349. 
MR 0387173 | 
Zbl 0319.10013[4] Dresden, G. P. B., Du, Z.: 
A simplified Binet formula for $k$-generalized Fibonacci numbers. J. Integer Seq. 17 (2014), Article No. 14.4.7, 9 pages. 
MR 3181762 | 
Zbl 1360.11031[5] Horadam, A. F.: 
Applications of modified Pell numbers to representations. Ulam Q. 3 (1995), 35-53. 
MR 1368399 | 
Zbl 0874.11023[6] Kalman, D.: 
Generalized Fibonacci numbers by matrix methods. Fibonacci Q. 20 (1982), 73-76. 
MR 0660765 | 
Zbl 0472.10016[7] Kiliç, E.: 
On the usual Fibonacci and generalized order-$k$ Pell numbers. Ars Comb. 88 (2008), 33-45. 
MR 2426404 | 
Zbl 1224.11024[9] Kiliç, E., Taşci, D.: 
The linear algebra of the Pell matrix. Bol. Soc. Mat. Mex., III. Ser. 11 (2005), 163-174. 
MR 2207722 | 
Zbl 1092.05004[12] Lee, G.-Y., Lee, S.-G., Kim, J.-S., Shin, H.-K.: 
The Binet formula and representations of $k$-generalized Fibonacci numbers. Fibonacci Q. 39 (2001), 158-164. 
MR 1829526 | 
Zbl 0989.11008[13] Marques, D.: 
On $k$-generalized Fibonacci numbers with only one distinct digit. Util. Math. 98 (2015), 23-31. 
MR 3410879 | 
Zbl 1369.11014[16] Wolfram, D. A.: 
Solving generalized Fibonacci recurrences. Fibonacci Q. 36 (1998), 129-145. 
MR 1622060 | 
Zbl 0911.11014[17] Wu, Z., Zhang, H.: 
On the reciprocal sums of higher-order sequences. Adv. Difference Equ. 2013 (2013), Paper No. 189, 8 pages \99999DOI99999 10.1186/1687-1847-2013-189 \vfil. 
MR 3084191 | 
Zbl 1390.11042