[1] Balbes R., Dwinger P.: 
Distributive Lattices. University of Missouri Press, Columbia, 1974. 
MR 0373985 | 
Zbl 0321.06012 
[2] Celani S. A.: 
Topological representation of distributive semilattices. Sci. Math. Jpn. 58 (2003), no. 1, 55–65. 
MR 1987817 | 
Zbl 1041.06002 
[5] Celani S. A.: 
Relative annihilator-preserving congruence relations and relative annihilator-preserving homomorphisms in bounded distributive semilattices. Open Math. 13 (2015), no. 1, 165–177. 
MR 3314172 
[6] Celani S., Calomino I.: 
Some remarks on distributive semilattices. Comment. Math. Univ. Carolin. 54 (2013), no. 3, 407–428. 
MR 3090419 
[7] Chajda I., Halaš R., Kühr J.: 
Semilattice Structures. Research and Exposition in Mathematics, 30, Heldermann Verlag, Lemgo, 2007. 
MR 2326262 
[10] Cornish W.: 
Quasicomplemented lattices. Comment. Math. Univ. Carolinae 15 (1974), 501–511. 
MR 0354468 
[11] Grätzer G.: 
General Lattice Theory. Birkhäuser Verlag, Basel, 1998. 
MR 1670580 
[16] Pawar Y., Mane D.: 
$\alpha$-ideals in $0$-distributive semilattices and $0$-distributive lattices. Indian J. Pure Appl. Math. 24 (1993), 435–443. 
MR 1234802 
[17] Pawar Y. S., Khopade S. S.: 
$\alpha$-ideals and annihilator ideals in $0$-distributive lattices. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 49 (2010), no. 1, 63–74. 
MR 2797524 
[18] Ramana Murty P. V., Ramam V.: 
On filters and filter congruences in semilattices. Algebra Universalis 12 (1981), no. 3, 343–351. 
DOI 10.1007/BF02483894 | 
MR 0624300 
[20] Varlet J. C.: 
A generalization of the notion of pseudo-complementedness. Bull. Soc. Roy. Sci. Liège 37 (1968), 149–158. 
MR 0228390 | 
Zbl 0162.03501