| Title:
             | 
A frictional contact problem with adhesion for viscoelastic materials with long memory (English) | 
| Author:
             | 
Kasri, Abderrezak | 
| Language:
             | 
English | 
| Journal:
             | 
Applications of Mathematics | 
| ISSN:
             | 
0862-7940 (print) | 
| ISSN:
             | 
1572-9109 (online) | 
| Volume:
             | 
66 | 
| Issue:
             | 
4 | 
| Year:
             | 
2021 | 
| Pages:
             | 
479-508 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We consider a quasistatic contact problem between a viscoelastic material with long-term memory and a foundation. The contact is modelled with a normal compliance condition, a version of Coulomb's law of dry friction and a bonding field which describes the adhesion effect. We derive a variational formulation of the mechanical problem and, under a smallness assumption, we establish an existence theorem of a weak solution including a regularity result. The proof is based on the time-discretization method, the Banach fixed point theorem and arguments of lower semicontinuity, compactness and monotonicity. (English) | 
| Keyword:
             | 
viscoelastic material | 
| Keyword:
             | 
long memory | 
| Keyword:
             | 
adhesion | 
| Keyword:
             | 
quasistatic process | 
| Keyword:
             | 
Coulomb's law of dry friction | 
| Keyword:
             | 
normal compliance | 
| Keyword:
             | 
the time-discretization method | 
| Keyword:
             | 
variational inequality | 
| MSC:
             | 
49J40 | 
| MSC:
             | 
74A55 | 
| MSC:
             | 
74D05 | 
| MSC:
             | 
74F25 | 
| MSC:
             | 
74H20 | 
| idZBL:
             | 
07396165 | 
| idMR:
             | 
MR4283301 | 
| DOI:
             | 
10.21136/AM.2021.0308-19 | 
| . | 
| Date available:
             | 
2021-07-09T08:11:06Z | 
| Last updated:
             | 
2023-09-04 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/148970 | 
| . | 
| Reference:
             | 
[1] Andersson, L.-E.: A quasistatic frictional problem with normal compliance.Nonlinear Anal., Theory Methods Appl. 16 (1991), 347-369. Zbl 0722.73061, MR 1093846, 10.1016/0362-546X(91)90035-Y | 
| Reference:
             | 
[2] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations.Universitext. Springer, New York (2011). Zbl 1220.46002, MR 2759829, 10.1007/978-0-387-70914-7 | 
| Reference:
             | 
[3] Chau, O., Goeleven, D., Oujja, R.: Solvability of a nonclamped frictional contact problem with adhesion.Essays in Mathematics and Its Applications Springer, Cham (2016), 71-87. Zbl 1405.35207, MR 3526915, 10.1007/978-3-319-31338-2_4 | 
| Reference:
             | 
[4] Chau, O., Shillor, M., Sofonea, M.: Dynamic frictionless contact with adhesion.Z. Angew. Math. Phys. 55 (2004), 32-47. Zbl 1064.74132, MR 2033859, 10.1007/s00033-003-1089-9 | 
| Reference:
             | 
[5] Chen, X.: Modelling and Predicting Textile Behaviour.Elsevier, Amsterdam (2009). 10.1533/9781845697211 | 
| Reference:
             | 
[6] Drozdov, A. D.: Finite Elasticity and Viscoelasticity: A Course in the Nonlinear Mechanics of Solids.World Scientific, Singapore (1996). Zbl 0839.73001, MR 1445291, 10.1142/2905 | 
| Reference:
             | 
[7] Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics.Grundlehren der mathematischen Wissenschaften 219. Springer, Berlin (1976). Zbl 0331.35002, MR 0521262 | 
| Reference:
             | 
[8] Emmrich, E.: Discrete versions of Gronwall's lemma and their application to the numerical analysis of parabolic problems.Preprint Series of the Institute of Mathematics Technische Universität Berlin (1999), Preprint 637-1999, 37 pages. | 
| Reference:
             | 
[9] Frémond, M.: Adhérence des solides.J. Méc. Théor. Appl. 6 (1987), 383-407 French. Zbl 0645.73046, MR 0912217 | 
| Reference:
             | 
[10] Frémond, M.: Non-Smooth Thermomechanics.Springer, Berlin (2002). Zbl 0990.80001, MR 1885252, 10.1007/978-3-662-04800-9 | 
| Reference:
             | 
[11] Gasiński, L., Papageorgiou, N. S.: Nonlinear Analysis.Series in Mathematical Analysis and Applications 9. Chapman & Hall/CRC, Boca Raton (2006). Zbl 1086.47001, MR 2168068, 10.1201/9781420035049 | 
| Reference:
             | 
[12] Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity.AMS/IP Studies in Advanced Mathematics 30. American Mathematical Society, Providence (2002). Zbl 1013.74001, MR 1935666, 10.1090/amsip/030 | 
| Reference:
             | 
[13] Kasri, A., Touzaline, A.: Analysis and numerical approximation of a frictional contact problem with adhesion.Rev. Roum. Math. Pures Appl. 62 (2017), 477-503. Zbl 1399.74025, MR 3743417 | 
| Reference:
             | 
[14] Kasri, A., Touzaline, A.: A quasistatic frictional contact problem for viscoelastic materials with long memory.Georgian Math. J. 27 (2020), 249-264. Zbl 1440.49010, MR 4104300, 10.1515/gmj-2018-0002 | 
| Reference:
             | 
[15] Klarbring, A., Mikelić, A., Shillor, M.: Frictional contact problems with normal compliance.Int. J. Eng. Sci. 26 (1988), 811-832. Zbl 0662.73079, MR 0958441, 10.1016/0020-7225(88)90032-8 | 
| Reference:
             | 
[16] Migórski, S., Ochal, A., Sofonea, M.: Analysis of frictional contact problem for viscoelastic materials with long memory.Discrete Contin. Dyn. Syst., Ser. B 15 (2011), 687-705. Zbl 1287.74026, MR 2774134, 10.3934/dcdsb.2011.15.687 | 
| Reference:
             | 
[17] Nečas, J., Hlaváček, I.: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction.Studies in Applied Mechanics 3. Elsevier, Amsterdam (1981). Zbl 0448.73009, MR 0600655, 10.1016/c2009-0-12554-0 | 
| Reference:
             | 
[18] Panagiotopoulos, P. D.: Inequality Problems in Mechanics and Applications: Convex and Nonconvex Energy Functions.Birkhäuser, Boston (1985). Zbl 0579.73014, MR 0896909, 10.1007/978-1-4612-5152-1 | 
| Reference:
             | 
[19] Raous, M., Cangémi, L., Cocu, M.: A consistent model coupling adhesion, friction, and unilateral contact.Comput. Methods Appl. Mech. Eng. 177 (1999), 383-399. Zbl 0949.74008, MR 1710458, 10.1016/S0045-7825(98)00389-2 | 
| Reference:
             | 
[20] Shillor, M., Sofonea, M., Telega, J. J.: Models and Analysis of Quasistatic Contact: Variational Methods.Lecture Notes in Physics 655. Springer, Berlin (2004). Zbl 1069.74001, 10.1007/b99799 | 
| Reference:
             | 
[21] Sofonea, M., Han, W., Shillor, M.: Analysis and Approximation of Contact Problems with Adhesion or Damage.Pure and Applied Mathematics (Boca Raton) 276. Chapman &Hall/CRC Press, Boca Raton (2006). Zbl 1089.74004, MR 2183435, 10.1201/9781420034837 | 
| Reference:
             | 
[22] Sofonea, M., Matei, A.: Variational Inequalities with Applications: A Study of Antiplane Frictional Contact Problems.Advances in Mechanics and Mathematics 18. Springer, New York (2009). Zbl 1195.49002, MR 2488869, 10.1007/978-0-387-87460-9 | 
| Reference:
             | 
[23] Sofonea, M., Rodríguez-Arós, A. D., Viaño, J. M.: A class of integro-differential variational inequalities with applications to viscoelastic contact.Math. Comput. Modelling 41 (2005), 1355-1369. Zbl 1080.47052, MR 2151949, 10.1016/j.mcm.2004.01.011 | 
| Reference:
             | 
[24] Touzaline, A.: A quasistatic frictional contact problem with adhesion for nonlinear elastic materials.Electron. J. Differ. Equ. 2008 (2008), Article ID 131, 17 pages. Zbl 1173.35709, MR 2443154 | 
| . |