Previous |  Up |  Next

Article

Title: Nontrivial solutions to boundary value problems for semilinear $\Delta _\gamma $-differential equations (English)
Author: Luyen, Duong Trong
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 4
Year: 2021
Pages: 461-478
Summary lang: English
.
Category: math
.
Summary: In this article, we study the existence of nontrivial weak solutions for the following boundary value problem: $$ -\Delta _\gamma u=f(x,u) \ \text {in} \ \Omega , \quad u=0 \ \text {on} \ \partial \Omega , $$ where $\Omega $ is a bounded domain with smooth boundary in $\mathbb {R}^N$, $\Omega \cap \{x_j=0\}\ne \emptyset $ for some $j$, $\Delta _{\gamma }$ is a subelliptic linear operator of the type $$ \Delta _\gamma : =\sum _{j=1}^{N}\partial _{x_j} (\gamma _j^2 \partial _{x_j} ), \quad \partial _{x_j}:=\frac {\partial }{\partial x_{j}}, \quad N\ge 2, $$ where $\gamma (x) = (\gamma _1(x), \gamma _2(x),\dots ,\gamma _N(x))$ satisfies certain homogeneity conditions and degenerates at the coordinate hyperplanes and the nonlinearity $f(x,\xi )$ is of subcritical growth and does not satisfy the Ambrosetti-Rabinowitz (AR) condition. (English)
Keyword: $\Delta _\gamma $-Laplace problem
Keyword: Cerami condition
Keyword: variational method
Keyword: weak solution
Keyword: Mountain Pass Theorem
MSC: 35D30
MSC: 35J20
MSC: 35J25
MSC: 35J70
idZBL: 07396164
idMR: MR4283300
DOI: 10.21136/AM.2021.0363-19
.
Date available: 2021-07-09T08:10:23Z
Last updated: 2023-09-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148968
.
Reference: [1] Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems.Cambridge Studies in Advanced Mathematics 104. Cambridge University Press, Cambridge (2007). Zbl 1125.47052, MR 2292344, 10.1017/CBO9780511618260
Reference: [2] Ambrosetti, A., Rabinowitz, P. H.: Dual variational methods in critical point theory and applications.J. Funct. Anal. 14 (1973), 349-381. Zbl 0273.49063, MR 0370183, 10.1016/0022-1236(73)90051-7
Reference: [3] Anh, C. T., My, B. K.: Existence of solutions to $\Delta_\lambda$-Laplace equations without the Ambrosetti-Rabinowitz condition.Complex Var. Elliptic Equ. 61 (2016), 137-150. Zbl 1336.35164, MR 3428858, 10.1080/17476933.2015.1068762
Reference: [4] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations.Universitext. Springer, New York (2011). Zbl 1220.46002, MR 2759829, 10.1007/978-0-387-70914-7
Reference: [5] Cerami, G.: An existence criterion for the critical points on unbounded manifolds.Rend., Sci. Mat. Fis. Chim. Geol. 112 (1978), 332-336 Italian. Zbl 0436.58006, MR 0581298
Reference: [6] Cerami, G.: Sull'esistenza di autovalori per un problema al contorno non lineare.Ann. Mat. Pura Appl., IV. Ser. 124 (1980), 161-179 Italian. Zbl 0441.35054, MR 0591554, 10.1007/BF01795391
Reference: [7] Franchi, B., Lanconelli, E.: An embedding theorem for Sobolev spaces related to nonsmooth vector fields and Harnack inequality.Commun. Partial Differ. Equations 9 (1984), 1237-1264. Zbl 0589.46023, MR 0764663, 10.1080/03605308408820362
Reference: [8] Garofalo, N., Lanconelli, E.: Existence and nonexistence results for semilinear equations on the Heisenberg group.Indiana Univ. Math. J. 41 (1992), 71-98. Zbl 0793.35037, MR 1160903, 10.1512/iumj.1992.41.41005
Reference: [9] Grushin, V. V.: On a class of hypoelliptic operators.Math. USSR, Sb. 12 (1970), 458-476 translation from Mat. Sb. (N.S.) 83 1970 456-473. Zbl 0252.35057, MR 0279436, 10.1070/SM1970v012n03ABEH000931
Reference: [10] Jerison, D. S.: The Dirichlet problem for the Kohn Laplacian on the Heisenberg group II.J. Funt. Anal. 43 (1981), 224-257. Zbl 0493.58022, MR 0633978, 10.1016/0022-1236(81)90031-8
Reference: [11] Jerison, D. S., Lee, J. M.: The Yamabe problem on CR manifolds.J. Diff. Geom. 25 (1987), 167-197. Zbl 0661.32026, MR 0880182, 10.4310/jdg/1214440849
Reference: [12] Kogoj, A. E., Lanconelli, E.: On semilinear $\Delta_\lambda$-Laplace equation.Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 4637-4649. Zbl 1260.35020, MR 2927124, 10.1016/j.na.2011.10.007
Reference: [13] Kogoj, A. E., Lanconelli, E.: Linear and semilinear problems involving $\Delta_\lambda$-Laplacians.Electron. J. Differ. Equ. 2018 (2018), Article ID 25, 167-178. Zbl 1400.35130, MR 3883635
Reference: [14] Lam, N., Lu, G.: $N$-Laplacian equations in $\mathbb{R}^N$ with subcritical and critical growth without the Ambrosetti-Rabinowitz condition.Adv. Nonlinear Stud. 13 (2013), 289-308. Zbl 1283.35049, MR 3076792, 10.1515/ans-2013-0203
Reference: [15] Lam, N., Lu, G.: Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition.J. Geom. Anal. 24 (2014), 118-143. Zbl 1305.35069, MR 3145918, 10.1007/s12220-012-9330-4
Reference: [16] Li, G., Wang, C.: The existence of a nontrivial solution to a nonlinear elliptic problem of linking type without the Ambrosetti-Rabinowitz condition.Ann. Acad. Sci. Fenn., Math. 36 (2011), 461-480. Zbl 1234.35095, MR 2865507, 10.5186/aasfm.2011.3627
Reference: [17] Li, S., Wu, S., Zhou, H.-S.: Solutions to semilinear elliptic problems with combined nonlinearities.J. Differ. Equations 185 (2002), 200-224. Zbl 1032.35072, MR 1935276, 10.1006/jdeq.2001.4167
Reference: [18] Liu, S.: On superlinear problems without the Ambrosetti and Rabinowitz condition.Nonlinear Anal., Theory Methods Appl., Ser. A 73 (2010), 788-795. Zbl 1192.35074, MR 2653749, 10.1016/j.na.2010.04.016
Reference: [19] Liu, Z., Wang, Z.-Q.: On the Ambrosetti-Rabinowitz superlinear condition.Adv. Nonlinear Stud. 4 (2004), 563-574. Zbl 1113.35048, MR 2100913, 10.1515/ans-2004-0411
Reference: [20] Luyen, D. T.: Two nontrivial solutions of boundary-value problems for semilinear $\Delta_{\gamma}$ differential equations.Math. Notes 101 (2017), 815-823. Zbl 1375.35200, MR 3669606, 10.1134/S0001434617050078
Reference: [21] Luyen, D. T.: Existence of nontrivial solution for fourth-order semilinear $\Delta_{\gamma}$-Laplace equation in $\mathbb{R}^N$.Electron. J. Qual. Theory Differ. Equ. 2019 (2019), Article ID 78, 12 pages. Zbl 07174921, MR 4028910, 10.14232/ejqtde.2019.1.78
Reference: [22] Luyen, D. T., Tri, N. M.: Existence of solutions to boundary-value problems for semilinear $\Delta_{\gamma}$ differential equations.Math. Notes 97 (2015), 73-84. Zbl 1325.35051, MR 3394492, 10.1134/S0001434615010101
Reference: [23] Luyen, D. T., Tri, N. M.: Global attractor of the Cauchy problem for a semilinear degenerate damped hyperbolic equation involving the Grushin operator.Ann. Pol. Math. 117 (2016), 141-161. Zbl 1356.35057, MR 3539074, 10.4064/ap3831-3-2016
Reference: [24] Luyen, D. T., Tri, N. M.: Large-time behavior of solutions to degenerate damped hyperbolic equations.Sib. Math. J. 57 (2016), 632-649 translation from Sib. Mat. Zh. 57 2016 809-829. Zbl 1364.35045, MR 3601331, 10.1134/S0037446616040078
Reference: [25] Luyen, D. T., Tri, N. M.: Existence of infinitely many solutions for semilinear degenerate Schrödinger equations.J. Math. Anal. Appl. 461 (2018), 1271-1286. Zbl 1392.35146, MR 3765489, 10.1016/j.jmaa.2018.01.016
Reference: [26] Luyen, D. T., Tri, N. M.: Infinitely many solutions for a class of perturbed degenerate elliptic equations involving the Grushin operator.Complex Var. Elliptic Equ. 65 (2020), 2135-2150. MR 4170200, 10.1080/17476933.2020.1730824
Reference: [27] Miyagaki, O. H., Souto, M. A. S.: Superlinear problems without Ambrosetti and Rabinowitz growth condition.J. Differ. Equations 245 (2008), 3628-3638. Zbl 1158.35400, MR 2462696, 10.1016/j.jde.2008.02.035
Reference: [28] Rabinowitz, P. H.: Minimax Methods in Critical Point theory with Applications to Differential Equations.Regional Conference Series in Mathematics 65. American Mathematical Society, Providence (1986). Zbl 0609.58002, MR 0845785, 10.1090/cbms/065
Reference: [29] Schechter, M., Zou, W.: Superlinear problems.Pac. J. Math. 214 (2004), 145-160. Zbl 1134.35346, MR 2039130, 10.2140/pjm.2004.214.145
Reference: [30] Thuy, N. T. C., Tri, N. M.: Some existence and nonexistence results for boundary value problems for semilinear elliptic degenerate operators.Russ. J. Math. Phys. 9 (2002), 365-370. Zbl 1104.35306, MR 1965388
Reference: [31] Thuy, P. T., Tri, N. M.: Nontrivial solutions to boundary value problems for semilinear strongly degenerate elliptic differential equations.NoDEA, Nonlinear Differ. Equ. Appl. 19 (2012), 279-298. Zbl 1247.35028, MR 2926298, 10.1007/s00030-011-0128-z
Reference: [32] Thuy, P. T., Tri, N. M.: Long time behavior of solutions to semilinear parabolic equations involving strongly degenerate elliptic differential operators.NoDEA, Nonlinear Differ. Equ. Appl. 20 (2013), 1213-1224. Zbl 1268.35018, MR 3057173, 10.1007/s00030-012-0205-y
Reference: [33] Tri, N. M.: Critical Sobolev exponent for degenerate elliptic operators.Acta Math. Vietnam. 23 (1998), 83-94. Zbl 0910.35060, MR 1628086
Reference: [34] Tri, N. M.: On Grushin's equation.Math. Notes 63 (1998), 84-93 translation from Mat. Zametki 63 1998 95-105. Zbl 0913.35049, MR 1631852, 10.1007/BF02316146
Reference: [35] Tri, N. M.: Semilinear Degenerate Elliptic Differential Equations: Local and Global Theories.Lambert Academic Publishing, Saarbrücken (2010).
Reference: [36] Tri, N. M.: Recent Progress in the Theory of Semilinear Equations Involving Degenerate Elliptic Differential Operators.Publ. House Sci. Technology, Hanoi (2014).
.

Files

Files Size Format View
AplMat_66-2021-4_1.pdf 301.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo