Previous |  Up |  Next

# Article

Full entry | Fulltext not available (moving wall 24 months)
Keywords:
$\Delta _\gamma$-Laplace problem; Cerami condition; variational method; weak solution; Mountain Pass Theorem
Summary:
In this article, we study the existence of nontrivial weak solutions for the following boundary value problem: $$-\Delta _\gamma u=f(x,u) \ \text {in} \ \Omega , \quad u=0 \ \text {on} \ \partial \Omega ,$$ where $\Omega$ is a bounded domain with smooth boundary in $\mathbb {R}^N$, $\Omega \cap \{x_j=0\}\ne \emptyset$ for some $j$, $\Delta _{\gamma }$ is a subelliptic linear operator of the type $$\Delta _\gamma : =\sum _{j=1}^{N}\partial _{x_j} (\gamma _j^2 \partial _{x_j} ), \quad \partial _{x_j}:=\frac {\partial }{\partial x_{j}}, \quad N\ge 2,$$ where $\gamma (x) = (\gamma _1(x), \gamma _2(x),\dots ,\gamma _N(x))$ satisfies certain homogeneity conditions and degenerates at the coordinate hyperplanes and the nonlinearity $f(x,\xi )$ is of subcritical growth and does not satisfy the Ambrosetti-Rabinowitz (AR) condition.
References:
[1] Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge Studies in Advanced Mathematics 104. Cambridge University Press, Cambridge (2007). DOI 10.1017/CBO9780511618260 | MR 2292344 | Zbl 1125.47052
[2] Ambrosetti, A., Rabinowitz, P. H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973), 349-381. DOI 10.1016/0022-1236(73)90051-7 | MR 0370183 | Zbl 0273.49063
[3] Anh, C. T., My, B. K.: Existence of solutions to $\Delta_\lambda$-Laplace equations without the Ambrosetti-Rabinowitz condition. Complex Var. Elliptic Equ. 61 (2016), 137-150. DOI 10.1080/17476933.2015.1068762 | MR 3428858 | Zbl 1336.35164
[4] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011). DOI 10.1007/978-0-387-70914-7 | MR 2759829 | Zbl 1220.46002
[5] Cerami, G.: An existence criterion for the critical points on unbounded manifolds. Rend., Sci. Mat. Fis. Chim. Geol. 112 (1978), 332-336 Italian. MR 0581298 | Zbl 0436.58006
[6] Cerami, G.: Sull'esistenza di autovalori per un problema al contorno non lineare. Ann. Mat. Pura Appl., IV. Ser. 124 (1980), 161-179 Italian. DOI 10.1007/BF01795391 | MR 0591554 | Zbl 0441.35054
[7] Franchi, B., Lanconelli, E.: An embedding theorem for Sobolev spaces related to nonsmooth vector fields and Harnack inequality. Commun. Partial Differ. Equations 9 (1984), 1237-1264. DOI 10.1080/03605308408820362 | MR 0764663 | Zbl 0589.46023
[8] Garofalo, N., Lanconelli, E.: Existence and nonexistence results for semilinear equations on the Heisenberg group. Indiana Univ. Math. J. 41 (1992), 71-98. DOI 10.1512/iumj.1992.41.41005 | MR 1160903 | Zbl 0793.35037
[9] Grushin, V. V.: On a class of hypoelliptic operators. Math. USSR, Sb. 12 (1970), 458-476 translation from Mat. Sb. (N.S.) 83 1970 456-473. DOI 10.1070/SM1970v012n03ABEH000931 | MR 0279436 | Zbl 0252.35057
[10] Jerison, D. S.: The Dirichlet problem for the Kohn Laplacian on the Heisenberg group II. J. Funt. Anal. 43 (1981), 224-257. DOI 10.1016/0022-1236(81)90031-8 | MR 0633978 | Zbl 0493.58022
[11] Jerison, D. S., Lee, J. M.: The Yamabe problem on CR manifolds. J. Diff. Geom. 25 (1987), 167-197. DOI 10.4310/jdg/1214440849 | MR 0880182 | Zbl 0661.32026
[12] Kogoj, A. E., Lanconelli, E.: On semilinear $\Delta_\lambda$-Laplace equation. Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 4637-4649. DOI 10.1016/j.na.2011.10.007 | MR 2927124 | Zbl 1260.35020
[13] Kogoj, A. E., Lanconelli, E.: Linear and semilinear problems involving $\Delta_\lambda$-Laplacians. Electron. J. Differ. Equ. 2018 (2018), Article ID 25, 167-178. MR 3883635 | Zbl 1400.35130
[14] Lam, N., Lu, G.: $N$-Laplacian equations in $\mathbb{R}^N$ with subcritical and critical growth without the Ambrosetti-Rabinowitz condition. Adv. Nonlinear Stud. 13 (2013), 289-308. DOI 10.1515/ans-2013-0203 | MR 3076792 | Zbl 1283.35049
[15] Lam, N., Lu, G.: Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition. J. Geom. Anal. 24 (2014), 118-143. DOI 10.1007/s12220-012-9330-4 | MR 3145918 | Zbl 1305.35069
[16] Li, G., Wang, C.: The existence of a nontrivial solution to a nonlinear elliptic problem of linking type without the Ambrosetti-Rabinowitz condition. Ann. Acad. Sci. Fenn., Math. 36 (2011), 461-480. DOI 10.5186/aasfm.2011.3627 | MR 2865507 | Zbl 1234.35095
[17] Li, S., Wu, S., Zhou, H.-S.: Solutions to semilinear elliptic problems with combined nonlinearities. J. Differ. Equations 185 (2002), 200-224. DOI 10.1006/jdeq.2001.4167 | MR 1935276 | Zbl 1032.35072
[18] Liu, S.: On superlinear problems without the Ambrosetti and Rabinowitz condition. Nonlinear Anal., Theory Methods Appl., Ser. A 73 (2010), 788-795. DOI 10.1016/j.na.2010.04.016 | MR 2653749 | Zbl 1192.35074
[19] Liu, Z., Wang, Z.-Q.: On the Ambrosetti-Rabinowitz superlinear condition. Adv. Nonlinear Stud. 4 (2004), 563-574. DOI 10.1515/ans-2004-0411 | MR 2100913 | Zbl 1113.35048
[20] Luyen, D. T.: Two nontrivial solutions of boundary-value problems for semilinear $\Delta_{\gamma}$ differential equations. Math. Notes 101 (2017), 815-823. DOI 10.1134/S0001434617050078 | MR 3669606 | Zbl 1375.35200
[21] Luyen, D. T.: Existence of nontrivial solution for fourth-order semilinear $\Delta_{\gamma}$-Laplace equation in $\mathbb{R}^N$. Electron. J. Qual. Theory Differ. Equ. 2019 (2019), Article ID 78, 12 pages. DOI 10.14232/ejqtde.2019.1.78 | MR 4028910 | Zbl 07174921
[22] Luyen, D. T., Tri, N. M.: Existence of solutions to boundary-value problems for semilinear $\Delta_{\gamma}$ differential equations. Math. Notes 97 (2015), 73-84. DOI 10.1134/S0001434615010101 | MR 3394492 | Zbl 1325.35051
[23] Luyen, D. T., Tri, N. M.: Global attractor of the Cauchy problem for a semilinear degenerate damped hyperbolic equation involving the Grushin operator. Ann. Pol. Math. 117 (2016), 141-161. DOI 10.4064/ap3831-3-2016 | MR 3539074 | Zbl 1356.35057
[24] Luyen, D. T., Tri, N. M.: Large-time behavior of solutions to degenerate damped hyperbolic equations. Sib. Math. J. 57 (2016), 632-649 translation from Sib. Mat. Zh. 57 2016 809-829. DOI 10.1134/S0037446616040078 | MR 3601331 | Zbl 1364.35045
[25] Luyen, D. T., Tri, N. M.: Existence of infinitely many solutions for semilinear degenerate Schrödinger equations. J. Math. Anal. Appl. 461 (2018), 1271-1286. DOI 10.1016/j.jmaa.2018.01.016 | MR 3765489 | Zbl 1392.35146
[26] Luyen, D. T., Tri, N. M.: Infinitely many solutions for a class of perturbed degenerate elliptic equations involving the Grushin operator. Complex Var. Elliptic Equ. 65 (2020), 2135-2150. DOI 10.1080/17476933.2020.1730824 | MR 4170200
[27] Miyagaki, O. H., Souto, M. A. S.: Superlinear problems without Ambrosetti and Rabinowitz growth condition. J. Differ. Equations 245 (2008), 3628-3638. DOI 10.1016/j.jde.2008.02.035 | MR 2462696 | Zbl 1158.35400
[28] Rabinowitz, P. H.: Minimax Methods in Critical Point theory with Applications to Differential Equations. Regional Conference Series in Mathematics 65. American Mathematical Society, Providence (1986). DOI 10.1090/cbms/065 | MR 0845785 | Zbl 0609.58002
[29] Schechter, M., Zou, W.: Superlinear problems. Pac. J. Math. 214 (2004), 145-160. DOI 10.2140/pjm.2004.214.145 | MR 2039130 | Zbl 1134.35346
[30] Thuy, N. T. C., Tri, N. M.: Some existence and nonexistence results for boundary value problems for semilinear elliptic degenerate operators. Russ. J. Math. Phys. 9 (2002), 365-370. MR 1965388 | Zbl 1104.35306
[31] Thuy, P. T., Tri, N. M.: Nontrivial solutions to boundary value problems for semilinear strongly degenerate elliptic differential equations. NoDEA, Nonlinear Differ. Equ. Appl. 19 (2012), 279-298. DOI 10.1007/s00030-011-0128-z | MR 2926298 | Zbl 1247.35028
[32] Thuy, P. T., Tri, N. M.: Long time behavior of solutions to semilinear parabolic equations involving strongly degenerate elliptic differential operators. NoDEA, Nonlinear Differ. Equ. Appl. 20 (2013), 1213-1224. DOI 10.1007/s00030-012-0205-y | MR 3057173 | Zbl 1268.35018
[33] Tri, N. M.: Critical Sobolev exponent for degenerate elliptic operators. Acta Math. Vietnam. 23 (1998), 83-94. MR 1628086 | Zbl 0910.35060
[34] Tri, N. M.: On Grushin's equation. Math. Notes 63 (1998), 84-93 translation from Mat. Zametki 63 1998 95-105. DOI 10.1007/BF02316146 | MR 1631852 | Zbl 0913.35049
[35] Tri, N. M.: Semilinear Degenerate Elliptic Differential Equations: Local and Global Theories. Lambert Academic Publishing, Saarbrücken (2010).
[36] Tri, N. M.: Recent Progress in the Theory of Semilinear Equations Involving Degenerate Elliptic Differential Operators. Publ. House Sci. Technology, Hanoi (2014).

Partner of