| Title:
             | 
Row Hadamard majorization on ${\bf M}_{m,n}$ (English) | 
| Author:
             | 
Askarizadeh, Abbas | 
| Author:
             | 
Armandnejad, Ali | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
71 | 
| Issue:
             | 
3 | 
| Year:
             | 
2021 | 
| Pages:
             | 
743-754 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
An $m \times n$ matrix $R$ with nonnegative entries is called row stochastic if the sum of entries on every row of $R$ is 1. Let ${\bf M}_{m,n}$ be the set of all $m \times n$ real matrices. For $A,B\in \nobreak {\bf M}_{m,n}$, we say that $A$ is row Hadamard majorized by $B$ (denoted by $A\prec _{RH}B)$ if there exists an $m \times n$ row stochastic matrix $R$ such that $A=R\circ B$, where $X \circ Y$ is the Hadamard product (entrywise product) of matrices $X,Y\in {\bf M}_{m,n}$. In this paper, we consider the concept of row Hadamard majorization as a relation on ${\bf M}_{m,n}$ and characterize the structure of all linear operators $T\colon {\bf M}_{m,n} \rightarrow {\bf M}_{m,n}$ preserving (or strongly preserving) row Hadamard majorization. Also, we find a theoretic graph connection with linear preservers (or strong linear preservers) of row Hadamard majorization, and we give some equivalent conditions for these linear operators on ${\bf M}_{n}$. (English) | 
| Keyword:
             | 
linear preserver | 
| Keyword:
             | 
row Hadamard majorization | 
| Keyword:
             | 
row stochastic matrix | 
| MSC:
             | 
15A04 | 
| MSC:
             | 
15A21 | 
| idZBL:
             | 
07396194 | 
| idMR:
             | 
MR4295242 | 
| DOI:
             | 
10.21136/CMJ.2020.0081-20 | 
| . | 
| Date available:
             | 
2021-08-02T08:05:05Z | 
| Last updated:
             | 
2023-10-02 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/149053 | 
| . | 
| Reference:
             | 
[1] Brualdi, R. A., Ryser, H. J.: Combinatorial Matrix Theory.Encyclopedia of Mathematics and Its Applications 39. Cambridge University Press, New York (1991). Zbl 0746.05002, MR 1130611, 10.1017/CBO9781107325708 | 
| Reference:
             | 
[2] Cheon, G.-S., Lee, Y.-H.: The doubly stochastic matrices of a multivariate majorization.J. Korean Math. Soc. 32 (1995), 857-867. Zbl 0839.15018, MR 1364595 | 
| Reference:
             | 
[3] Dahl, G.: Matrix majorization.Linear Algebra Appl. 288 (1999), 53-73. Zbl 0930.15023, MR 1670598, 10.1016/S0024-3795(98)10175-1 | 
| Reference:
             | 
[4] Hasani, A. M., Radjabalipour, M.: Linear preserver of matrix majorization.Int. J. Pure Appl. Math. 32 (2006), 475-482. Zbl 1126.15003, MR 2275080 | 
| Reference:
             | 
[5] Hasani, A. M., Radjabalipour, M.: The structure of linear operators strongly preserving majorization of matrices.Electron. J. Linear Algebra 15 (2006), 260-268. Zbl 1145.15003, MR 2255479, 10.13001/1081-3810.1236 | 
| Reference:
             | 
[6] Motlaghian, S. M., Armandnejad, A., Hall, F. J.: Linear preservers of Hadamard majorization.Electron. J. Linear Algebra 31 (2016), 593-609. Zbl 1347.15005, MR 3578394, 10.13001/1081-3810.3281 | 
| . |