Previous |  Up |  Next

Article

Title: Unconditional uniqueness of higher order nonlinear Schrödinger equations (English)
Author: Klaus, Friedrich
Author: Kunstmann, Peer
Author: Pattakos, Nikolaos
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 3
Year: 2021
Pages: 709-742
Summary lang: English
.
Category: math
.
Summary: We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with the initial data $u_{0}\in X$, where $X\in \{M_{2,q}^{s}(\mathbb {R}), H^{\sigma }(\mathbb {T}), H^{s_{1}}(\mathbb {R})+H^{s_{2}}(\mathbb {T})\}$ and $q\in [1,2]$, $s\geq 0$, or $\sigma \geq 0$, or $s_{2}\geq s_{1}\geq 0$. Moreover, if $M_{2,q}^{s}(\mathbb {R})\hookrightarrow L^{3}(\mathbb {R})$, or if $\sigma \geq \frac 16$, or if $s_{1}\geq \frac 16$ and $s_{2}>\frac 12$ we show that the Cauchy problem is unconditionally wellposed in $X$. Similar results hold true for all higher order nonlinear Schrödinger equations and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ the normal form reduction via the differentiation by parts technique and build upon our previous work. (English)
Keyword: normal form method
Keyword: modulation space
Keyword: unconditional uniqueness
Keyword: higher order nonlinear Schrödinger
MSC: 35A01
MSC: 35A02
MSC: 35D30
MSC: 35J30
idZBL: 07396193
idMR: MR4295241
DOI: 10.21136/CMJ.2021.0078-20
.
Date available: 2021-08-02T08:04:35Z
Last updated: 2023-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/149052
.
Reference: [1] Babin, A. V., Ilyin, A. A., Titi, E. S.: On the regularization mechanism for the periodic Korteweg-de Vries equation.Commun. Pure Appl. Math. 64 (2011), 591-648. Zbl 1284.35365, MR 2789490, 10.1002/cpa.20356
Reference: [2] Ben-Artzi, M., Koch, H., Saut, J.-C.: Dispersion estimates for fourth order Schrödinger equations.C. R. Acad. Sci., Paris, Sér. I, Math. 330 (2000), 87-92. Zbl 0942.35160, MR 1745182, 10.1016/S0764-4442(00)00120-8
Reference: [3] Bényi, Á., Gröchenig, K., Okoudjou, K., Rogers, L. G.: Unimodular Fourier multipliers for modulation spaces.J. Funct. Anal. 246 (2007), 366-384. Zbl 1120.42010, MR 2321047, 10.1016/j.jfa.2006.12.019
Reference: [4] Boulenger, T., Lenzmann, E.: Blowup for biharmonic NLS.Ann. Scient. Éc. Norm. Supér. (4) 50 (2017), 503-544. Zbl 1375.35476, MR 3665549, 10.24033/asens.2326
Reference: [5] Chaichenets, L., Hundertmark, D., Kunstmann, P., Pattakos, N.: Knocking out teeth in one-dimensional periodic nonlinear Schrödinger equation.SIAM J. Math. Anal. 51 (2019), 3714-3749. Zbl 1428.35492, MR 4002719, 10.1137/19M1249679
Reference: [6] Chaichenets, L., Hundertmark, D., Kunstmann, P., Pattakos, N.: Nonlinear Schrödinger equation, differentiation by parts and modulation spaces.J. Evol. Equ. 19 (2019), 803-843. Zbl 1428.35493, MR 3997245, 10.1007/s00028-019-00501-z
Reference: [7] Chaichenets, L., Pattakos, N.: The global Cauchy problem for the NLS with higher order anisotropic dispersion.Glasg. Math. J. 63 (2021), 45-53. Zbl 07286310, MR 4190068, 10.1017/S0017089519000491
Reference: [8] Choffrut, A., Pocovnicu, O.: Ill-posedness for the cubic nonlinear half-wave equation and other fractional NLS on the real line.Int. Math. Res. Not. 2018 (2018), 699-738. Zbl 1406.35461, MR 3801444, 10.1093/imrn/rnw246
Reference: [9] Chowdury, A., Kedziora, D. J., Ankiewicz, A., Akhmediev, N.: Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms.Phys. Rev. E 90 (2014), Article ID 032922. 10.1103/PhysRevE.90.032922
Reference: [10] Christ, M.: Nonuniqueness of weak solutions of the nonlinear Schrödinger equation.Available at https://arxiv.org/abs/math/0503366 (2005), 13 pages.
Reference: [11] Christ, M.: Power series solution of a nonlinear Schrödinger equation.Mathematical Aspects of Nonlinear Dispersive Equations Annals of Mathematics Studies 163. Princeton University Press, Princeton (2007), 131-155. Zbl 1142.35084, MR 2333210, 10.1515/9781400827794.131
Reference: [12] Colliander, J., Oh, T.: Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(\mathbb T)$.Duke Math. J. 161 (2012), 367-414. Zbl 1260.35199, MR 2881226, 10.1215/00127094-1507400
Reference: [13] Feichtinger, H. G.: Modulation spaces on locally compact abelian groups.Proceedings of International Conference on Wavelets and Applications 2002 New Delhi Allied Publishers, Delhi (2003), 99-140.
Reference: [14] Fibich, G., Ilan, B., Papanicolaou, G.: Self-focusing with fourth-order dispersion.SIAM J. Appl. Math. 62 (2002), 1437-1462. Zbl 1003.35112, MR 1898529, 10.1137/S0036139901387241
Reference: [15] Gubinelli, M.: Rough solutions for the periodic Korteweg-de Vries equation.Commun. Pure Appl. Anal. 11 (2012), 709-733. Zbl 1278.35213, MR 2861805, 10.3934/cpaa.2012.11.709
Reference: [16] Guo, S.: On the 1D cubic nonlinear Schrödinger equation in an almost critical space.J. Fourier Anal. Appl. 23 (2017), 91-124. Zbl 1361.35165, MR 3602811, 10.1007/s00041-016-9464-z
Reference: [17] Guo, Z., Kwon, S., Oh, T.: Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS.Commun. Math. Phys. 322 (2013), 19-48. Zbl 1308.35270, MR 3073156, 10.1007/s00220-013-1755-5
Reference: [18] Guo, Z., Oh, T.: Non-existence of solutions for the periodic cubic NLS below $L^2$.Int. Math. Res. Not. 2018 (2018), 1656-1729. Zbl 1410.35199, MR 3801473, 3801473
Reference: [19] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers.Clarendon Press, New York (1979). Zbl 0423.10001, MR 0568909
Reference: [20] Herr, S., Sohinger, V.: Unconditional uniqueness results for the nonlinear Schrödinger equation.Commun. Contemp. Math. 21 (2019), Article ID 1850058, 33 pages. Zbl 1428.35516, MR 4017783, 10.1142/S021919971850058X
Reference: [21] Kang, Z.-Z., Xia, T.-C., Ma, W.-X.: Riemann-Hilbert approach and $N$-soliton solution for an eighth-order nonlinear Schrödinger equation in an optical fiber.Adv. Difference Equ. 2019 (2019), Article ID 188, 14 pages. Zbl 07057006, MR 3950782, 10.1186/s13662-019-2121-5
Reference: [22] Karpman, V. I.: Stabilization of soliton instabilities by higher order dispersion: Fourth- order nonlinear Schrödinger type equations.Phys. Rev. E 53 (1996), 1336-1339. MR 1372681, 10.1103/PhysRevE.53.R1336
Reference: [23] Karpman, V. I., Shagalov, A. G.: Stability of solitons described by nonlinear Schrödinger- type equations with higher-order dispersion.Physica D 144 (2000), 194-210. Zbl 0962.35165, MR 1779828, 10.1016/S0167-2789(00)00078-6
Reference: [24] Kato, T.: On nonlinear Schrödinger equations. II. $H^S$-solutions and unconditional well-posedness.J. Anal. Math. 67 (1995), 281-306. Zbl 0848.35124, MR 1383498, 10.1007/BF02787794
Reference: [25] Kishimoto, N.: Unconditional uniqueness of solutions for nonlinear dispersive equations.Available at https://arxiv.org/abs/1911.04349 (2019), 48 pages.
Reference: [26] Miyachi, A., Nicola, F., Rivetti, S., Tabacco, A., Tomita, N.: Estimates for unimodular Fourier multipliers on modulation spaces.Proc. Am. Math. Soc. 137 (2009), 3869-3883. Zbl 1183.42013, MR 2529896, 10.1090/S0002-9939-09-09968-7
Reference: [27] Oh, T., Tzvetkov, N.: Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation.Probab. Theory Relat. Fields 169 (2017), 1121-1168. Zbl 1382.35274, MR 3719064, 10.1007/s00440-016-0748-7
Reference: [28] Oh, T., Wang, Y.: Global well-posedness of the periodic cubic fourth order NLS in negative Sobolev spaces.Forum Math. Sigma 6 (2018), Article ID e5, 80 pages. Zbl 1431.35178, MR 3800620, 10.1017/fms.2018.4
Reference: [29] Oh, T., Wang, Y.: On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle.An. Ştiinţ. Univ. Al. I. Cuza Iaşi., Ser. Nouă, Mat. 64 (2018), 53-84. Zbl 1438.35397, MR 3896809
Reference: [30] Pattakos, N.: NLS in the modulation space $M_{2,q}(\mathbb R)$.J. Fourier Anal. Appl. 25 (2019), 1447-1486. Zbl 1420.35372, MR 3977124, 10.1007/s00041-018-09655-9
Reference: [31] Pausader, B.: The cubic fourth-order Schrödinger equation.J. Func. Anal. 256 (2009), 2473-2517. Zbl 1171.35115, MR 2502523, 10.1016/j.jfa.2008.11.009
Reference: [32] Pausader, B., Shao, S.: The mass-critical fourth-order Schrödinger equation in high dimensions.J. Hyperbolic Differ. Equ. 7 (2010), 651-705. Zbl 1232.35156, MR 2746203, 10.1142/S0219891610002256
Reference: [33] Sedletsky, Y. V., Gandzha, I. S.: A sixth-order nonlinear Schrödinger equation as a reduction of the nonlinear Klein-Gordon equation for slowly modulated wave trains.Nonlinear Dyn. 94 (2018), 1921-1932. 10.1007/s11071-018-4465-x
Reference: [34] Vargas, A., Vega, L.: Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite $L^2$ norm.J. Math. Pures Appl., IX. Sér. 80 (2001), 1029-1044. Zbl 1027.35134, MR 1876762, 10.1016/S0021-7824(01)01224-7
Reference: [35] Wang, B., Hudzik, H.: The global Cauchy problem for the NLS and NLKG with small rough data.J. Differ. Equations 232 (2007), 36-73. Zbl 1121.35132, MR 2281189, 10.1016/j.jde.2006.09.004
Reference: [36] Yue, Y., Huang, L., Chen, Y.: Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrödinger equation.Commun. Nonlinear Sci. Numer. Simul. 89 (2020), Article ID 105284, 14 pages. Zbl 1454.35358, MR 4099385, 10.1016/j.cnsns.2020.105284
.

Files

Files Size Format View
CzechMathJ_71-2021-3_7.pdf 424.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo