Previous |  Up |  Next

Article

Title: Uniform regularity for an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics (English)
Author: Tang, Tong
Author: Sun, Jianzhu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 3
Year: 2021
Pages: 881-890
Summary lang: English
.
Category: math
.
Summary: It is well known that people can derive the radiation MHD model from an \hbox {MHD-$P1$} approximate model. As pointed out by F. Xie and C. Klingenberg (2018), the uniform regularity estimates play an important role in the convergence from an MHD-$P1$ approximate model to the radiation MHD model. The aim of this paper is to prove the uniform regularity of strong solutions to an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics. Here we use the bilinear commutator and product estimates to obtain our result. (English)
Keyword: uniform regularity
Keyword: MHD-$P1$
Keyword: compressible
MSC: 35B25
MSC: 35Q30
MSC: 35Q35
idZBL: 07396204
idMR: MR4295252
DOI: 10.21136/CMJ.2021.0132-20
.
Date available: 2021-08-02T08:10:08Z
Last updated: 2023-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/149063
.
Reference: [1] Alazard, T.: Low Mach number limit of the full Navier-Stokes equations.Arch. Ration. Mech. Anal. 180 (2006), 1-73. Zbl 1108.76061, MR 2211706, 10.1007/s00205-005-0393-2
Reference: [2] Chandrasekhar, S.: Radiative Transfer.Dover Publications, New York (1960). Zbl 0037.43201, MR 0111583
Reference: [3] Danchin, R., Ducomet, B.: The low Mach number limit for a barotropic model of radiative flow.SIAM J. Math. Anal. 48 (2016), 1025-1053. Zbl 1339.35236, MR 3473591, 10.1137/15M1009081
Reference: [4] Dou, C., Jiang, S., Ou, Y.: Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain.J. Differ. Equations 258 (2015), 379-398. Zbl 1310.35187, MR 3274763, 10.1016/j.jde.2014.09.017
Reference: [5] Fan, J., Li, F., Nakamura, G.: Non-relativistic and low Mach number limits of two $P1$ approximation model arising in radiation hydrodynamics.Commun. Math. Sci. 14 (2016), 2023-2036. Zbl 1353.35031, MR 3549360, 10.4310/CMS.2016.v14.n7.a11
Reference: [6] Fan, J., Li, F., Nakamura, G.: Local well-posedness and blow-up criterion for a compressible Navier-Stokes-Fourier-$P1$ approximate model arising in radiation hydrodynamics.Math. Methods Appl. Sci. 40 (2017), 6987-6997. Zbl 1387.35451, MR 3742109, 10.1002/mma.4506
Reference: [7] Feireisl, E.: Dynamics of Viscous Compressible Fluids.Oxford Lecture Series in Mathematics and its Applications 26. Oxford University Press, Oxford (2004). Zbl 1080.76001, MR 2040667, 10.1093/acprof:oso/9780198528388.001.0001
Reference: [8] Feireisl, E.: On the motion of a viscous, compressible, and heat conducting fluid.Indiana Univ. Math. J. 53 (2004), 1705-1738. Zbl 1087.35078, MR 2106342, 10.1512/iumj.2004.53.2510
Reference: [9] Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier-Stokes equations.J. Math. Fluid Mech. 3 (2001), 358-392. Zbl 0997.35043, MR 1867887, 10.1007/PL00000976
Reference: [10] Gong, H., Li, J., Liu, X.-G., Zhang, X.: Local well-posedness of isentropic compressible Navier-Stokes equations with vacuum.Commun. Math. Sci. 18 (2020), 1891-1909. MR 4195559, 10.4310/CMS.2020.v18.n7.a4
Reference: [11] He, F., Fan, J., Zhou, Y.: Local well-posedness and blow-up criterion for a compressible Navier-Stokes-$P1$ approximate model arising in radiation hydrodynamics.ZAMM, Z. Angew. Math. Mech. 98 (2018), 1632-1641. MR 3854726, 10.1002/zamm.201700142
Reference: [12] Huang, X.: On local strong and classical solutions to the three-dimensional barotropic compressible Navier-Stokes equations with vacuum.(to appear) in Sci. China, Math. 10.1007/s11425-019-9755-3
Reference: [13] Jiang, S., Li, F., Xie, F.: Non-relativistic limit of the compressible Navier-Stokes-Fourier-$P1$ approximation model arising in radiation hydrodynamics.SIAM J. Math. Anal. 47 (2015), 3726-3746. Zbl 1331.35262, MR 3403137, 10.1137/140987596
Reference: [14] Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations.Commun. Pure Appl. Math. 41 (1988), 891-907. Zbl 0671.35066, MR 0951744, 10.1002/cpa.3160410704
Reference: [15] Métivier, G., Schochet, S.: The incompressible limit of the non-isentropic Euler equations.Arch. Ration. Mech. Anal. 158 (2001), 61-90. Zbl 0974.76072, MR 1834114, 10.1007/PL00004241
Reference: [16] Novotný, A., Straškraba, I.: Introduction to the Mathematical Theory of Compressible Flow.Oxford Lecture Series in Mathematics and its Applications 27. Oxford University Press, Oxford (2004). Zbl 1088.35051, MR 2084891
Reference: [17] Triebel, H.: Theory of Function Spaces.Monographs in Mathematics 78. Birkhäuser, Basel (1983). Zbl 0546.46027, MR 0781540, 10.1007/978-3-0346-0416-1
Reference: [18] Vol'pert, A. I., Khudyaev, S. I.: Cauchy problem for composite systems of nonlinear differential equations.Mat. Sb., N. Ser. 87 (1972), 504-528 Russian. Zbl 0239.35017, MR 0390528, 10.1070/SM1972v016n04ABEH001438
Reference: [19] Xie, F., Klingenberg, C.: A limit problem for three-dimensional ideal compressible radiation magneto-hydrodynamics.Anal. Appl., Singap. 16 (2018), 85-102. Zbl 1386.35361, MR 3716736, 10.1142/S0219530516500238
.

Files

Files Size Format View
CzechMathJ_71-2021-3_18.pdf 215.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo