| Title:
             | 
Ideal class (semi)groups and atomicity in Prüfer domains (English) | 
| Author:
             | 
Hasenauer, Richard Erwin | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
71 | 
| Issue:
             | 
3 | 
| Year:
             | 
2021 | 
| Pages:
             | 
891-900 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We explore the connection between atomicity in Prüfer domains and their corresponding class groups. We observe that a class group of infinite order is necessary for non-Noetherian almost Dedekind and Prüfer domains of finite character to be atomic. We construct a non-Noetherian almost Dedekind domain and exhibit a generating set for the ideal class semigroup. (English) | 
| Keyword:
             | 
Prüfer domain | 
| Keyword:
             | 
factorization | 
| MSC:
             | 
13A50 | 
| MSC:
             | 
13F15 | 
| idZBL:
             | 
07396205 | 
| idMR:
             | 
MR4295253 | 
| DOI:
             | 
10.21136/CMJ.2020.0136-20 | 
| . | 
| Date available:
             | 
2021-08-02T08:10:35Z | 
| Last updated:
             | 
2023-10-02 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/149064 | 
| . | 
| Reference:
             | 
[1] Coykendall, J., Hasenauer, R. E.: Factorization in Prüfer domains.Glasg. Math. J. 60 (2018), 401-409. Zbl 1393.13013, MR 3784055, 10.1017/S0017089517000179 | 
| Reference:
             | 
[2] Gilmer, R.: Multiplicative Ideal Theory.Queen's Papers in Pure and Applied Mathematics 90. Queen's University, Kingston (1992). Zbl 0804.13001, MR 1204267 | 
| Reference:
             | 
[3] Hasenauer, R. E.: Normsets of almost Dedekind domains and atomicity.J. Commut. Algebra 8 (2016), 61-75. Zbl 1343.13010, MR 3482346, 10.1216/JCA-2016-8-1-61 | 
| Reference:
             | 
[4] Loper, A.: Sequence domains and integer-valued polynomials.J. Pure Appl. Algebra 119 (1997), 185-210. Zbl 0960.13005, MR 1453219, 10.1016/S0022-4049(96)00025-4 | 
| Reference:
             | 
[5] Olberding, B.: Factorization into radical ideals.Arithmetical Properties of Commutative Rings and Monoids Lecture Notes in Pure and Applied Mathematics 241. Chapman & Hall/CRC, Boca Raton (2005), 363-377. Zbl 1091.13002, MR 2140708, 10.1201/9781420028249.ch25 | 
| . |