[1] Bieberbach, L.: 
Theorie der gewöhnlichen Differentialgleichungen auf funktionentheoretischer Grundlage dargestellt. Die Grundlehren der Mathematischen Wissenschaften 66. Springer, Berlin (1965), German. 
MR 0176133 | 
Zbl 0124.04603[2] Fettouch, H., Hamouda, S.: 
Growth of local solutions to linear differential equations around an isolated essential singularity. Electron. J. Differ. Equ. 2016 (2016), Paper No. 226, 10 pages. 
MR 3547415 | 
Zbl 1352.34113[3] Hamouda, S.: 
Finite and infinite order solutions of a class of higher order linear differential equations. Aust. J. Math. Anal. Appl. 9 (2012), Article No. 10, 9 pages. 
MR 2903775 | 
Zbl 1238.34152[4] Hamouda, S.: 
Properties of solutions to linear differential equations with analytic coefficients in the unit disc. Electron. J. Differ. Equ. 2012 (2012), Paper No. 177, 8 pages. 
MR 2991411 | 
Zbl 1254.34121[7] Hayman, W. K.: 
Meromorphic Functions. Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). 
MR 0164038 | 
Zbl 0115.06203[8] Khrystiyanyn, A. Ya., Kondratyuk, A. A.: 
On the Nevanlinna theory for meromorphic functions on annuli. I. Mat. Stud. 23 (2005), 19-30. 
MR 2150985 | 
Zbl 1066.30036[9] Kinnunen, L.: 
Linear differential equations with solutions of finite iterated order. Southeast Asian Bull. Math. 22 (1998), 385-405. 
MR 1811183 | 
Zbl 0934.34076[10] Kondratyuk, A., Laine, I.: 
Meromorphic functions in multiply connected domains. Fourier Series Methods in Complex Analysis I. Laine University of Joensuu 10. Department of Mathematics, University of Joensuu, Joensuu (2006), 9-111. 
MR 2296161 | 
Zbl 1144.30013[11] Korhonen, R.: 
Nevanlinna theory in an annulus. Value Distribution Theory and Related Topics Advances in Complex Analysis and Its Applications 3. Kluwer Academic Publishers, Boston (2004), 167-179. 
DOI 10.1007/1-4020-7951-6_7 | 
MR 2173300 | 
Zbl 1102.30025[13] Laine, I., Yang, R.: 
Finite order solutions of complex linear differential equations. Electron. J. Differ. Equ. 2004 (2004), Paper No. 65, 8 pages. 
MR 2057652 | 
Zbl 1063.30031[15] Tsuji, M.: 
Potential Theory in Modern Function Theory. Chelsea Publishing Company, New York (1975). 
MR 0414898 | 
Zbl 0322.30001