[4] Ashordia, M.: 
On the general and multipoint boundary value problems for linear systems of generalized ordinary differential equations, linear impulse and linear difference systems. Mem. Differ. Equ. Math. Phys. 36 (2005), 1-80. 
MR 2196660 | 
Zbl 1098.34010[5] Ashordia, M.: 
The initial problem for linear systems of generalized ordinary differential equations, linear impulsive and ordinary differential systems. Numerical solvability. Mem. Differ. Equ. Math. Phys. 78 (2019), 1-162. 
MR 4088041[7] Gelashvili, S., Kiguradze, I.: 
On multi-point boundary value problems for systems of functional differential and difference equations. Mem. Differ. Equ. Math. Phys. 5 (1995), 1-113. 
MR 1415806 | 
Zbl 0902.34059[8] Godunov, S. K., Ryaben'kij, V. S.: 
Schémas aux différences. Introduction à la théorie. Éditions Mir, Moscow (1977), French. 
MR 0494796 | 
Zbl 0374.65002[9] Hall, G., (eds.), J. M. Watt: 
Modern Numerical Methods for Ordinary Differential Equations. Clarendon Press, Oxford (1976). 
MR 0474823 | 
Zbl 0348.65064[11] Lambert, J. D.: 
Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. John Wiley & Sons, Chichester (1991). 
MR 1127425 | 
Zbl 0745.65049[12] Monteiro, G. A., Slavík, A., Tvrdý, M.: 
Kurzweil-Stieltjes Integral: Theory and Applications. Series in Real Analysis 15. World Scientific, Hackensack (2019). 
DOI 10.1142/9432 | 
MR 3839599 | 
Zbl 06758513[13] Saks, S.: 
Theory of the Integral. Monografie Matematyczne 7. G. E. Stechert & Co., New York (1937). 
Zbl 0017.30004[15] Schwabik, Š., Tvrdý, M., Vejvoda, O.: 
Differential and Integral Equations. Boundary Value Problems and Adjoints. D. Reidel Publishing, Dordrecht (1979). 
MR 0542283 | 
Zbl 0417.45001