[6] Benchohra, M., Hamani, S., Ntouyas, S. K.: 
Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal., Theory Methods Appl., Ser. A 71 (2009), 2391-2396. 
DOI 10.1016/j.na.2009.01.073 | 
MR 2532767 | 
Zbl 1198.26007[9] El-Sayed, A. M. A., El-Salam, S. A. Abd: 
$L_p$-solution of weighted Cauchy-type problem of a diffre-integral functional equation. Int. J. Nonlinear Sci. 5 (2008), 281-288. 
MR 2410798 | 
Zbl 1230.34006[13] Miller, K. S., Ross, B.: 
An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley-Interscience Publication. John Wiley & Sons, New York (1993). 
MR 1219954 | 
Zbl 0789.26002[14] Podlubny, I.: 
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering 198. Academic Press, San Diego (1999). 
MR 1658022 | 
Zbl 0924.34008[15] Samko, S. G., Kilbas, A. A., Marichev, O. I.: 
Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993). 
MR 1347689 | 
Zbl 0818.26003[18] Souid, M. S.: 
$L^1$-solutions of boundary value problems for implicit fractional order differential equations with integral conditions. Int. J. Adv. Research Math. 11 (2018), 8-17. 
DOI 10.18052/www.scipress.com/IJARM.11.8[19] Yu, T., Deng, K., Luo, M.: 
Existence and uniqueness of solutions of initial value problems for nonlinear Langevin equation involving two fractional orders. Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 1661-1668. 
DOI 10.1016/j.cnsns.2013.09.035 | 
MR 3144748 | 
Zbl 07172530[21] Zhou, Z., Qiao, Y.: 
Solutions for a class of fractional Langevin equations with integral and anti-periodic boundary conditions. Bound. Value Probl. 2018 (2018), Article ID 152, 10 pages. 
DOI 10.1186/s13661-018-1070-3 | 
MR 3859564