Previous |  Up |  Next


delay-dependent stability; high-order neutral delay systems; bound of unstable eigenvalues; argument principle; nonnegative matrix
In this note, we are concerned with delay-dependent stability of high-order delay systems of neutral type. A bound of unstable eigenvalues of the systems is derived by the spectral radius of a nonnegative matrix. The nonnegative matrix is related to the coefficient matrices. A stability criterion is presented which is a necessary and sufficient condition for the delay-dependent stability of the systems. Based on the criterion, a numerical algorithm is provided which avoids the computation of the coefficients of the characteristic function. Under some conditions, the presented results are less conservative than those reported. A numerical example is given to illustrate the main results.
[1] Ding, K., Zhu, Q.: Extended dissipative anti-disturbance control for delayed switched singular semi-Markovian jump systems with multi-disturbance via disturbance observer. Automatica 128 (2021), 109556. DOI 
[2] Franklin, G. F., Powell, J. D., Emami-Naeini, A.: Feedback Control of Dynamic Systems. Addison-Weslay Publishing Company, New York 1994.
[3] Hale, J. K., Lunel, S. M. Verduyn: Strong stabilization of neutral functional differential equations. IMA J. Math. Control Inform. 19 (2002), 5-23. DOI 
[4] Hu, G. D.: A stability criterion for the system of high-order neutral delay differential equations. Siberian Math. J. 61 (2020), 1140-1146. DOI 
[5] Hu, G. D., Liu, M.: Stability criteria of linear neutral systems with multiple delays. IEEE Trans. Automat. Control 52 (2007), 720-724. DOI 
[6] Islam, S., Liu, P. X., Saddik, A. E., Yang, Y. B.: Bilateral control of teleoperation systems with time delay. IEEE/ASME Trans. Mechatron. 20 (2015), 1-12. DOI 
[7] Johnson, L. W., Riess, R. Dean, Arnold, J. T.: Introduction to Linear Algebra. Prentice-Hall, Englewood Cliffs 2000.
[8] Kamath, G. K., Jagannathan, K., Raina, G.: Impact of delayed acceleration feedback on the classical car-following model. IMA J. Appl. Math. 85 (2020), 584-604. DOI 
[9] Kolmanovskii, V. B., Myshkis, A.: Introduction to Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht 1999.
[10] Kyrychko, Y. N., Blyuss, K. B., Hövel, P., Schöll, E.: Asymptotic properties of the spectrum of neutral delay differential equations. Dynamical Systems 24 (2009), 361-372. DOI 
[11] Kyrychko, Y. N., Hogan, S. J.: On the use of delay equations in engineering applications. J. Vibration Control 16 (2010), 943-960. DOI 
[12] Lancaster, P.: The Theory of Matrices with Applications. Academic Press, Orlando 1985.
[13] Laub, A. J.: Computational Matrix Analysis. SIAM, Philadelphia 2012.
[14] Tong, D., Xu, C., Chen, Q., Zhou, W., Xu, Y.: Sliding mode control for nonlinear stochastic systems with Markovian jumping parameters and mode-dependent time-varying delays. Nonlinear Dynamics 100 (2020), 1343-1358. DOI 
[15] Tong, D., Xu, C., Chen, Q., Zhou, W.: Sliding mode control of a class of nonlinear systems. J. Franklin Inst. 357 (2020), 1560-1581. DOI 
[16] Wang, H., Zhu, Q.: Global Stabilization of a Class of Stochastic Nonlinear Time-Delay Systems With SISS Inverse Dynamics. IEEE Transactions on Automatic Control 65 (2020), 4448-4455. DOI 
[17] Wang, X. T., Zhang, L.: Partial eigenvalue assignment with time delay in high order system using the receptance. Linear Algebra Appl. 523 (2017), 335-345. DOI 
[18] Xu, C., Tong, D., Chen, Q., Zhou, W., Shi, P.: Exponential Stability of Markovian Jumping Systems via Adaptive Sliding Mode Control. IEEE Trans. Systems Man Cybernet-: Systems 51 (2021), 954-964. DOI 
[19] Zhu, Q., Huang, T.: Stability analysis for a class of stochastic delay nonlinear systems driven by G-Brownian motion. Systems Control Lett. 140 (2020), 104699. DOI 
Partner of
EuDML logo