| Title:
             | 
Properties of a quasi-uniformly monotone operator and its application to the electromagnetic $p$-$\text {curl}$ systems (English) | 
| Author:
             | 
Song, Chang-Ho | 
| Author:
             | 
Ri, Yong-Gon | 
| Author:
             | 
Sin, Cholmin | 
| Language:
             | 
English | 
| Journal:
             | 
Applications of Mathematics | 
| ISSN:
             | 
0862-7940 (print) | 
| ISSN:
             | 
1572-9109 (online) | 
| Volume:
             | 
67 | 
| Issue:
             | 
4 | 
| Year:
             | 
2022 | 
| Pages:
             | 
431-444 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In this paper we propose a new concept of quasi-uniform monotonicity weaker than the uniform monotonicity which has been developed in the study of nonlinear operator equation $Au=b$. We prove that if $A$ is a quasi-uniformly monotone and hemi-continuous operator, then $A^{-1}$ is strictly monotone, bounded and continuous, and thus the Galerkin approximations converge. Also we show an application of a quasi-uniformly monotone and hemi-continuous operator to the proof of the well-posedness and convergence of Galerkin approximations to the solution of steady-state electromagnetic $p$-curl systems. (English) | 
| Keyword:
             | 
well-posedness | 
| Keyword:
             | 
uniform monotonicity | 
| Keyword:
             | 
S-property | 
| Keyword:
             | 
$p$-curl systems | 
| MSC:
             | 
35A15 | 
| MSC:
             | 
35D30 | 
| MSC:
             | 
47H05 | 
| MSC:
             | 
65N30 | 
| MSC:
             | 
78M10 | 
| MSC:
             | 
78M30 | 
| idZBL:
             | 
Zbl 07584079 | 
| idMR:
             | 
MR4444786 | 
| DOI:
             | 
10.21136/AM.2021.0365-20 | 
| . | 
| Date available:
             | 
2022-06-28T13:20:31Z | 
| Last updated:
             | 
2024-09-02 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/150436 | 
| . | 
| Reference:
             | 
[1] Antontsev, S., Miranda, F., Santos, L.: A class of electromagnetic $p$-curl systems: Blow-up and finite time extinction.Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 3916-3929. Zbl 1246.35102, MR 2914580, 10.1016/j.na.2012.02.011 | 
| Reference:
             | 
[2] Antontsev, S., Miranda, F., Santos, L.: Blow-up and finite time extinction for $p(x,t)$-curl systems arising in electromagnetism.J. Math. Anal. Appl. 440 (2016), 300-322 \99999DOI99999 10.1016/j.jmaa.2016.03.045 	. Zbl 1339.35060, MR 3479601, 10.1016/j.jmaa.2016.03.045 | 
| Reference:
             | 
[3] Aramaki, J.: $L^p$ theory for the div-curl system.Int. J. Math. Anal., Ruse 8 (2014), 259-271 \99999DOI99999 10.12988/ijma.2014.4112 	. MR 3188605 | 
| Reference:
             | 
[4] Bahrouni, A., Repovš, D.: Existence and nonexistence of solutions for $p(x)$-curl systems arising in electromagnetism.Complex Var. Elliptic Equ. 63 (2018), 292-301 \99999DOI99999 10.1080/17476933.2017.1304390 	. Zbl 1423.35124, MR 3764762 | 
| Reference:
             | 
[5] Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces.Springer Monographs in Mathematics. Springer, Berlin (2010),\99999DOI99999 10.1007/978-1-4419-5542-5 	. Zbl 1197.35002, MR 2582280 | 
| Reference:
             | 
[6] Cimrák, I., Keer, R. Van: Level set method for the inverse elliptic problem in nonlinear electromagnetism.J. Comput. Phys. 229 (2010), 9269-9283 \99999DOI99999 10.1016/j.jcp.2010.08.038 	. Zbl 1207.78045, MR 2733153 | 
| Reference:
             | 
[7] Dunford, N., Schwartz, J. T.: Linear Operators. I. General Theory.Pure and Applied Mathematics 7. Interscience Publishers, New York (1958),\99999MR99999 0117523 	. Zbl 0084.10402, MR 0117523 | 
| Reference:
             | 
[8] u, J. Franc\accent23: Monotone operators: A survey directed to applications to differential equations.Appl. Math. 35 (1990), 257-301 \99999DOI99999 10.21136/AM.1990.104411 	. Zbl 0724.47025, MR 1065003 | 
| Reference:
             | 
[9] Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Mathematische Lehrbücher und Monographien. II. Abteilung. Band 38. Akademie, Berlin (1974), German \99999MR99999 0636412 	. Zbl 0289.47029, MR 0636412 | 
| Reference:
             | 
[10] Gerbeau, J.-F., Bris, C. Le, Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals.Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2006),\99999DOI99999 10.1093/acprof:oso/9780198566656.001.0001 	. Zbl 1107.76001, MR 2289481 | 
| Reference:
             | 
[11] Janíková, E., Slodička, M.: Fully discrete linear approximation scheme for electric field diffusion in type-II superconductors.J. Comput. Appl. Math. 234 (2010), 2054-2061 \99999DOI99999 10.1016/j.cam.2009.08.063 	. Zbl 1195.82105, MR 2652398 | 
| Reference:
             | 
[12] László, S. C.: The Theory of Monotone Operators with Applications.Babes-Bolyai University, Budapest (2011) 	. | 
| Reference:
             | 
[13] Xiang, M., Wang, F., Zhang, B.: Existence and multiplicity for $p(x)$-curl systems arising in electromagnetism.J. Math. Anal. Appl. 448 (2017), 1600-1617 \99999DOI99999 10.1016/j.jmaa.2016.11.086 	. Zbl 1358.35181, MR 3582298 | 
| Reference:
             | 
[14] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/B. Nonlinear Monotone Operators.Springer, New York (1990). Zbl 0684.47029, MR 1033498, 10.1007/978-1-4612-0981-2 | 
| . |