[2] Dragomir, S. S.: Some refinements of Schwarz inequality. Proceedings of the Simpozionul de Matematici si Aplicatii, Timisoara, Romania (1985), 13-16.
[4] Dragomir, S. S.: 
Inequalities for the norm and numerical radius of composite operator in Hilbert spaces. Inequalities and Applications International Series of Numerical Mathematics 157. Birkhäuser, Basel (2009), 135-146. 
DOI 10.1007/978-3-7643-8773-0_13 | 
MR 2758975 | 
Zbl 1266.26036[5] Dragomir, S. S.: 
Power inequalities for the numerical radius of a product of two operators in Hilbert spaces. Sarajevo J. Math. 5 (2009), 269-278. 
MR 2567758 | 
Zbl 1225.47008[7] Goldstein, A. A., Ryff, J. V., Clarke, L. E.: 
Problems and solutions: Solutions of advanced problems 5473. Am. Math. Mon. 75 (1968), 309-310. 
DOI 10.2307/2314992 | 
MR 1534789[9] Hardy, G. H., Littlewood, J. E., Pólya, G.: 
Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). 
MR 0944909 | 
Zbl 0634.26008[10] Hosseini, M. S., Omidvar, M. E., Moosavi, B., Moradi, H. R.: 
Some inequalities for the numerical radius for Hilbert $C^*$-modules space operators. Georgian Math. J. 28 (2021), 255-260. 
DOI 10.1515/gmj-2019-2053 | 
MR 4235824 | 
Zbl 07339609[11] Kadison, R. V., Ringrose, J. R.: 
Fundamentals of the Theory of Operator Algebras. Vol. 1. Elementary Theory. Pure and Applied Mathematics 100. Academic Press, New York (1983). 
MR 0719020 | 
Zbl 0518.46046[19] Moosavi, B., Hosseini, M. S.: 
Some inequalities for the numerical radius for operators in Hilbert $C^*$-modules space. J. Inequal. Spec. Funct. 10 (2019), 77-84. 
MR 4016178