[2] Bauer, S., Pauly, D.: 
On Korn's first inequality for mixed tangential and normal boundary conditions on bounded Lipschitz domains in $\mathbb{R}^N$. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 62 (2016), 173-188. 
DOI 10.1007/s11565-016-0247-x | 
MR 3570353 | 
Zbl 1364.46028[3] Veiga, H. Beirão da: 
Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions. Adv. Differ. Equ. 9 (2004), 1079-1114. 
MR 2098066 | 
Zbl 1103.35084[4] Veiga, H. Beirão da: 
On the regularity of flows with Ladyzhenskaya shear-dependent viscosity and slip or non-slip boundary conditions. Commun. Pure Appl. Math. 58 (2005), 552-577. 
DOI 10.1002/cpa.20036 | 
MR 2119869 | 
Zbl 1075.35045[5] Bögelein, V., Duzaar, F., Habermann, J., Scheven, C.: 
Stationary electro-rheological fluids: Low order regularity for systems with discontinuous coefficients. Adv. Calc. Var. 5 (2012), 1-57. 
DOI 10.1515/acv.2011.009 | 
MR 2879566 | 
Zbl 1238.35095[8] Bulíček, M., Gwiazda, P., Málek, J., Świerczewska-Gwiazda, A.: 
On unsteady flows of implicitly constituted incompressible fluids. SIAM J. Math. Anal. 44 (2012), 2756-2801. 
DOI 10.1137/110830289 | 
MR 3023393 | 
Zbl 1256.35074[10] Chen, P., Xiao, Y., Zhang, H.: 
Vanishing viscosity limit for the 3D nonhomogeneous incompressible Navier-Stokes equations with a slip boundary condition. Math. Methods Appl. Sci. 40 (2017), 5925-5932. 
DOI 10.1002/mma.4443 | 
MR 3713338 | 
Zbl 1390.35226[15] Diening, L., Málek, J., Steinhauer, M.: 
On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications. ESAIM, Control Optim. Calc. Var. 14 (2008), 211-232. 
DOI 10.1051/cocv:2007049 | 
MR 2394508 | 
Zbl 1143.35037[27] Ladyzhenskaya, O. A.: 
The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969). 
MR 0254401 | 
Zbl 0184.52603[29] Lions, J. L.: 
Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969), French. 
MR 0259693 | 
Zbl 0189.40603[31] Malý, J., Ziemer, W. P.: 
Fine Regularity of Solutions of Elliptic Partial Differential Equations. Mathematical Surveys and Monographs 51. American Mathematical Society, Providence (1997). 
DOI 10.1090/surv/051 | 
MR 1461542 | 
Zbl 0882.35001[32] Neustupa, J., Penel, P.: 
On regularity of a weak solution to the Navier-Stokes equations with the generalized Navier slip boundary conditions. Adv. Math. Phys. 2018 (2018), Article ID 4617020, 7 pages. 
DOI 10.1155/2018/4617020 | 
MR 3773415 | 
Zbl 1406.35236[33] Rădulescu, D. V., Repovš, D. D.: 
Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015). 
DOI 10.1201/b18601 | 
MR 3379920 | 
Zbl 1343.35003[37] Sin, C.: 
The existence of weak solutions for steady flow of electrorheological fluids with nonhomogeneous Dirichlet boundary condition. Nonlinear Anal., Theory Methods Appl., Ser. A 163 (2017), 146-162. 
DOI 10.1016/j.na.2017.06.014 | 
MR 3695973 | 
Zbl 1375.35400[40] Solonnikov, V. A., Scadilov, V. E.: 
On a boundary value problem for a stationary system of Navier-Stokes equations. Proc. Steklov Inst. Math. 125 (1973), 186-199 translation from Trudy Mat. Inst. Steklov 125 1973 196-210. 
MR 0172014 | 
Zbl 0313.35063