[1] Agrachev, A., Barilari, D., Boscain, U.: 
A comprehensive introduction to sub-Riemannian geometry. Cambridge Stud. Adv. Math., vol. 181, Cambridge University Press, Cambridge, 2020. 
MR 3971262[3] Bellaïche, A.: 
The tangent space in sub-Riemannian geometry. Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 1–78. 
MR 1421822 | 
Zbl 0862.53031[5] Godoy Molina, M., Grong, E., Markina, I., Silva Leite, F.: 
An intrinsic formulation of the problem on rolling manifolds. J. Dyn. Control Syst. 18 (2012), no. 2, 181–214. 
DOI 10.1007/s10883-012-9139-2 | 
MR 2914415[6] Gromov, M.: 
Carnot-Carathéodory spaces seen from within. Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 79–323. 
MR 1421823 | 
Zbl 0864.53025[7] Grong, E.: 
Controllability of rolling without twisting or slipping in higher dimensions. SIAM J. Control Optim. 50 (2012), no. 4, 2462–2485. 
DOI 10.1137/110829581 | 
MR 2974746[8] Grong, E.: Canonical connections on sub-Riemannian manifolds with constant symbol. arXiv preprint arXiv:2010.05366 (2020).
[10] Lee, J.M.: 
Riemannian manifolds. Grad. Texts in Math., vol. 176, Springer-Verlag, New York, 1997, An introduction to curvature. 
MR 1468735[11] Lee, J.M.: 
Introduction to smooth manifolds. second ed., Graduate Texts in Mathematics, vol. 218, Springer, New York, 2013. 
MR 2954043[12] Montgomery, R.: 
A tour of subriemannian geometries, their geodesics and applications. Math. Surveys Monogr., vol. 91, American Mathematical Society, Providence, RI, 2002. 
MR 1867362 | 
Zbl 1044.53022[15] Sharpe, R.W.: 
Differential geometry. Grad. Texts in Math., vol. 166, Springer-Verlag, New York, 1997, Cartan's generalization of Klein's Erlangen program, With a foreword by S. S. Chern. 
MR 1453120 | 
Zbl 0876.53001