[2] Banos, B.: Integrable geometries and Monge-Ampèere equations. arXiv: Differential Geometry (2006).
[7] Delahaies, S.: 
Complex and contact geometry in geophysical fluid dynamics. Ph.D. thesis, 01 2009. 
MR 3697449[8] Kosmann-Schwarzbach, Y., Rubtsov, V.: 
Compatible structures on Lie algebroids and Monge-Ampère operators. Acta Appl. Math. 109 (2010), no. 1, 101–135. 
DOI 10.1007/s10440-009-9444-2 | 
MR 2579885[9] Kushner, A., Lychagin, V., Rubtsov, V.: 
Contact geometry and nonlinear differential equations. Encyclopedia Math. Appl., Cambridge University Press, 2006. 
MR 2352610[11] Lychagin, V.V., Roubtsov, V.: 
Monge–Ampère Grassmannians, characteristic classes and all that. pp. 233–257, Springer International Publishing, Cham, 2019. 
MR 3932304[12] Lychagin, V.V., Rubtsov, V.N., Chekalov, I.V.: 
A classification of Monge-Ampère equations. Ann. Sci. Éc. Norm. Supér. (4) Ser. 4, 26 (1993), no. 3, 281–308 (en). MR 94c:58229 
MR 1222276[13] Roulstone, I., Banos, B., Gibbon, J.D., Roubtsov, V.N.: Kähler geometry and Burgers’ vortices. (2009).
[14] Rubtsov, V., Roulstone, I.: 
Holomorphic structures in hydrodynamical models of nearly geostrophic flow. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), 1519–1531. 
DOI 10.1098/rspa.2001.0779 | 
MR 1851013[15] Rubtsov, V. N., Roulstone, I.: 
Examples of quaternionic and Kähler structures in Hamiltonian models of nearly geostrophic flow. J. Phys. A 30 (1997), no. 4, L63–L68. 
DOI 10.1088/0305-4470/30/4/004 | 
MR 1457975[16] Rubtsov, Volodya: 
Geometry of Monge-Ampère structures. pp. 95–156, Springer International Publishing, Cham, 2019. 
MR 3932299[17] Shima, Hirohiko: 
The geometry of Hessian structures. World Scientific, 2007. 
MR 2293045