Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
square-free; Salié sum; asymptotic formula
Summary:
Let $k$ be a fixed integer. We study the asymptotic formula of $R(H,r,k)$, which is the number of positive integer solutions $1\leq x, y,z\leq H$ such that the polynomial $x^2+y^2+z^2+k$ is $r$-free. We obtained the asymptotic formula of $R(H,r,k)$ for all $r\ge 2$. Our result is new even in the case $r=2$. We proved that $R(H,2,k)= c_kH^3 +O(H^{9/4+\varepsilon })$, where $c_k>0$ is a constant depending on $k$. This improves upon the error term $O(H^{7/3+\varepsilon })$ obtained by G.-L. Zhou, Y. Ding (2022).
References:
[1] Brandes, J.: Twins of the $s$-Free Numbers: Diploma Thesis. University of Stuttgart, Stuttgart (2009).
[2] Carlitz, L.: On a problem in additive arithmetic. II. Q. J. Math., Oxf. Ser. 3 (1932), 273-290. DOI 10.1093/qmath/os-3.1.273 | Zbl 0006.10401
[3] Chen, B.: On the consecutive square-free values of the polynomials $x_{1}^2 + \cdots + x_{k}^2 + 1$, $x_{1}^2 + \cdots + x_{k}^2 + 2$. (to appear) in Indian J. Pure Appl. Math. DOI 10.1007/s13226-022-00292-z | MR 1398080
[4] Dimitrov, S.: On the number of pairs of positive integers $x, y \leq H$ such that $x^2 + y^2 + 1$, $x^2 + y^2 + 2$ are square-free. Acta Arith. 194 (2020), 281-294. DOI 10.4064/aa190118-25-7 | MR 4096105 | Zbl 1469.11263
[5] Dimitrov, S.: Pairs of square-free values of the type $n^2+1$, $n^2+2$. Czech. Math. J. 71 (2021), 991-1009. DOI 10.21136/CMJ.2021.0165-20 | MR 4339105 | Zbl 07442468
[6] Estermann, T.: Einige Sätze über quadratfreie Zahlen. Math. Ann. 105 (1931), 653-662 German. DOI 10.1007/BF01455836 | MR 1512732 | Zbl 0003.15001
[7] Estermann, T.: A new application of the Hardy-Littlewood-Kloosterman method. Proc. Lond. Math. Soc., III. Ser. 12 (1962), 425-444. DOI 10.1112/plms/s3-12.1.425 | MR 0137677 | Zbl 0105.03606
[8] Heath-Brown, D. R.: The square sieve and consecutive square-free numbers. Math. Ann. 266 (1984), 251-259. DOI 10.1007/BF01475576 | MR 0730168 | Zbl 0514.10038
[9] Heath-Brown, D. R.: Square-free values of $n^2+1$. Acta Arith. 155 (2012), 1-13. DOI 10.4064/aa155-1-1 | MR 2982423 | Zbl 1312.11077
[10] Iwaniec, H.: Almost-primes represented by quadratic polynomials. Invent. Math. 47 (1978), 171-188. DOI 10.1007/bf01578070 | MR 0485740 | Zbl 0389.10031
[11] Iwaniec, H.: Topics in Classical Automorphic Forms. Graduate Studies in Mathematics 17. AMS, Providence (1997). DOI 10.1090/gsm/017 | MR 1474964 | Zbl 0905.11023
[12] Jing, M., Liu, H.: Consecutive square-free numbers and square-free primitive roots. Int. J. Number Theory 18 (2022), 205-226. DOI 10.1142/S1793042122500154 | MR 4369801 | Zbl 1489.11005
[13] Mirsky, L.: Note on an asymptotic formula connected with $r$-free integers. Q. J. Math., Oxf. Ser. 18 (1947), 178-182. DOI 10.1093/qmath/os-18.1.178 | MR 0021566 | Zbl 0029.10905
[14] Mirsky, L.: On the frequency of pairs of square-free numbers with a given difference. Bull. Am. Math. Soc. 55 (1949), 936-939. DOI 10.1090/S0002-9904-1949-09313-8 | MR 0031507 | Zbl 0035.31301
[15] Nathanson, M. B.: Addictive Number Theory: The Classical Bases. Graduate Texts in Mathematics 164. Springer, New York (1996). DOI 10.1007/978-1-4757-3845-2 | MR 1395371 | Zbl 0859.11002
[16] Reuss, T.: The Determinant Method and Applications: Ph.D. Thesis. University of Oxford, Oxford (2015).
[17] Tolev, D. I.: On the number of pairs of positive integers $x, y \le H$ such that $x^2 + y^2 + 1$ is square-free. Monatsh. Math. 165 (2012), 557-567. DOI 10.1007/s00605-010-0246-4 | MR 2891268 | Zbl 1297.11118
[18] Zhou, G.-L., Ding, Y.: On the square-free values of the polynomial $x^2+ y^2+ z^2+k$. J. Number Theory 236 (2022), 308-322. DOI 10.1016/j.jnt.2021.07.022 | MR 4395352 | Zbl 1490.11096
Partner of
EuDML logo