[1] Aeyels D., Peuteman J.: 
A new asymptotic stability criterion for nonlinear time-varying differential equations. IEEE Trans. Automat. Control 43 (1998), no. 7, 968–971. 
DOI 10.1109/9.701102 | 
MR 1633504[2] Bay N. S., Phat V. N.: 
Stability of nonlinear difference time-varying systems with delays. Vietnam J. Math. 4 (1999), 129–136. 
MR 1810578[3] Bellman R.: 
Stability Theory of Differential Equations. McGraw-Hill Book Co., New York, 1953. 
MR 0061235[5] Ben Hamed B., Ellouze I., Hammami M. A.: 
Practical uniform stability of nonlinear differential delay equations. Mediterr. J. Math. 8 (2011), no. 4, 603–616. 
DOI 10.1007/s00009-010-0083-7 | 
MR 2860688[6] Ben Hamed B., Haj Salem Z., Hammami M. A.: 
Stability of nonlinear time-varying perturbed differential equations. Nonlinear Dynam. 73 (2013), no. 3, 1353–1365. 
DOI 10.1007/s11071-013-0868-x | 
MR 3083786[7] Ben Makhlouf A., Hammami M. A.: 
A nonlinear inequality and application to global asymptotic stability of perturbed systems. Math. Methods Appl. Sci. 38 (2015), no. 12, 2496–2505. 
DOI 10.1002/mma.3236 | 
MR 3372295[10] Damak H., Hammami M. A., Kalitine B.: 
On the global uniform asymptotic stability of time-varying systems. Differ. Equ. Dyn. Syst. 22 (2014), no. 2, 113–124. 
DOI 10.1007/s12591-012-0157-z | 
MR 3183099[11] Damak H., Hammami M. A., Kicha A.: 
A converse theorem for practical $h$-stability of time-varying nonlinear systems. New Zealand J. Math. 50 (2020), 109–123. 
DOI 10.53733/79 | 
MR 4216440[12] Damak H., Hammami M. A., Kicha A.: 
A converse theorem on practical $h$-stability of nonlinear systems. Mediterr. J. Math. 17 (2020), no. 3, Paper No. 88, 18 pages. 
DOI 10.1007/s00009-020-01518-2 | 
MR 4100040[13] Damak H., Hammami M. A., Kicha A.: 
Growth conditions for asymptotic behavior of solutions for certain time-varying differential equations. Differ. Uravn. Protsessy. Upr. (2021), no. 1, 423–447. 
MR 4241341[14] Damak H., Hammami M. A., Kicha A.: 
On the practical $h$-stabilization of nonlinear time-varying systems: application to separately excited DC motor. COMPEL-Int. J. Comput. Math. Electr. Electron Eng. 40 (2021), no. 4, 888–904. 
DOI 10.1108/COMPEL-05-2020-0178[15] Dragomir S. S.: 
Some Gronwall Type Inequalities and Applications. School of Communications and Informatics, Victoria University of Technology, Melbourne City, 2002. 
MR 2016992[16] Ellouze I., Hammami M. A.: 
Practical stability of impulsive control systems with multiple time delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 20 (2013), no. 3, 341–356. 
MR 3098457