[1] Abuzainab, N., Saad, W.: 
A multiclass mean-field game for thwarting misinformation spread in the internet of battlefield things. IEEE Trans. Commun. 66 (2018), 12, 6643-6658. 
DOI  
[2] Chen, H., Li, Y., Louie, R. H., Vucetic, B.: 
Autonomous demand side management based on energy consumption scheduling and instantaneous load billing: An aggregative game approach. IEEE Trans. Smart Grid 5 (2014), 4, 1744-1754. 
DOI  
[3] Chen, J., Zhu, Q.: 
nterdependent strategic security risk management with bounded rationality in the internet of things. IEEE Trans. Inform. Forensics Security {\mi14} (2019), 11, 2958-2971. 
DOI  
[4] Cheng, Z., Chen, G., Hong, Y.: 
Single-leader-multiple-followers stackelberg security game with hypergame framework. IEEE Trans. Inform. Forensics Security 17 (2022), 954-969. 
DOI  
[5] Hespanha, J. P., Ateskan, Y. S., al., H. Kizilocak et: Deception in non-cooperative games with partial information. In: Proc. 2nd DARPA-JFACC Symposium on Advances in Enterprise Control, Citeseer 2000, pp. 1-9.
[6] Huang, S., Lei, J., Hong, Y.: 
A linearly convergent distributed Nash equilibrium seeking algorithm for aggregative games. IEEE Trans. Automat. Control 68 (2022), 3, 1753-1759. 
DOI  | 
MR 4557578 
[7] Huang, L., Zhu, Q.: 
Duplicity games for deception design with an application to insider threat mitigation. IEEE Trans. Inform. Forensics Security 16 (2021), 4843-4856. 
DOI  
[8] Jelassi, S., Domingo-Enrich, C., Scieur, D., Mensch, A., Bruna, J.: Extragradient with player sampling for faster Nash equilibrium finding. In: Proc. International Conference on Machine Learning 2020.
[9] Jin, R., He, X., Dai, H.: 
On the security-privacy tradeoff in collaborative security: A quantitative information flow game perspective. IEEE Trans. Inform. Forensics Security 14 (2019), 12, 3273-3286. 
DOI  
[10] Johansson, B., Keviczky, T., Johansson, M., Johansson, K. H.: 
Subgradient methods and consensus algorithms for solving convex optimization problems. In: 47th IEEE Conference on Decision and Control, IEEE 2008, pp. 4185-4190. 
DOI  
[11] Koshal, J., Nedić, A., Shanbhag, U. V.: 
Distributed algorithms for aggregative games on graphs. Oper. Res. 64 (2016), 3, 680-704. 
DOI  | 
MR 3515205 
[12] Kovach, N. S., Gibson, A. S., Lamont, G. B.: 
Hypergame theory: a model for conflict, misperception, and deception. Game Theory (2015). 
MR 3391789 
[13] Lei, J., Shanbhag, U. V.: 
Asynchronous schemes for stochastic and misspecified potential games and nonconvex optimization. Operations Research 68 (2020), 6, 1742-1766. 
DOI  | 
MR 4217264 
[14] Liang, S., Yi, P., Hong, Y., Peng, K.: 
Exponentially convergent distributed Nash equilibrium seeking for constrained aggregative games. Autonomous Intell. Systems 2 (2022), 1, 6. 
DOI  | 
MR 4335720 
[15] Ma, J., Yang, Z., Chen, Z.: 
Distributed Nash equilibrium tracking via the alternating direction method of multipliers. Kybernetika 59 (2023), 4, 612-632. 
DOI  | 
MR 4660381 
[16] Meng, Y., Broom, M., Li, A.: 
Impact of misinformation in the evolution of collective cooperation on networks. J. Royal Soc. Interface 20 (2023), 206, 20230295. 
DOI  
[17] Meng, Y., Cornelius, S. P., Liu, Y. Y., Li, A.: 
Dynamics of collective cooperation under personalised strategy updates. Nature Commun. 15 (2024), 1, 3125. 
DOI  
[18] Nedic, A., Ozdaglar, A., Parrilo, P. A.: 
Constrained consensus and optimization in multi-agent networks. IEEE Trans. Automat. Control 55 (2010), 4, 922-938. 
DOI  | 
MR 2654432 
[19] Nguyen, K. C., Alpcan, T., Basar, T.: 
Security games with incomplete information. In: 2009 IEEE International Conference on Communications, pp. 1-6. 
DOI  
[20] Paccagnan, D., Gentile, B., Parise, F., Kamgarpour, M., Lygeros, J.: 
Distributed computation of generalized Nash equilibria in quadratic aggregative games with affine coupling constraints. In: 55th IEEE Conference on Decision and Control, IEEE 2016, pp. 6123-6128. 
DOI  
[21] Paccagnan, D., Gentile, B., Parise, F., Kamgarpour, M., Lygeros, J.: 
Nash and wardrop equilibria in aggregative games with coupling constraints. IEEE Trans. Automat. Control 64 (2018), 4, 1373-1388. 
DOI  | 
MR 3936417 
[22] Pawlick, J., Colbert, E., Zhu, Q.: 
Modeling and analysis of leaky deception using signaling games with evidence. IEEE Trans. Inform. Forensics Security 14 (2018), 7, 1871-1886. 
DOI  
[23] Sasaki, Y.: Preservation of misperceptions-stability analysis of hypergames. In: Proc. 52nd Annual Meeting of the ISSS-2008, Madison 2008.
[24] Sasaki, Y.: 
Generalized Nash equilibrium with stable belief hierarchies in static games with unawareness. Ann. Oper. Res. 256 (2017), 271-284. 
DOI  | 
MR 3697211 
[25] Scutari, G., Palomar, D. P., Facchinei, F., Pang, J.-S.: 
Convex optimization, game theory, and variational inequality theory. IEEE Signal Process. Magazine 27 (2010), 3, 35-49. 
DOI  | 
MR 2756856 
[26] Wang, M., Hipel, K. W., Fraser, N. M.: 
Modeling misperceptions in games. Behavioral Sci. 33 (1988), 3, 207-223. 
DOI  | 
MR 0946274 
[27] Wang, J., Zhang, J. F., He, X.: 
Differentially private distributed algorithms for stochastic aggregative games. Automatica 142 (2022), 110440. 
DOI  | 
MR 4437624 
[28] Xu, G., Chen, G., Qi, H., Hong, Y.: 
Efficient algorithm for approximating Nash equilibrium of distributed aggregative games. IEEE Trans. Cybernet. 53 (2023), 7, 4375-4387. 
DOI  
[29] Yilmaz, T., Ulusoy, Ö.: 
Misinformation propagation in online social networks: game theoretic and reinforcement learning approaches. IEEE Trans. Comput. Social Systems (2022). 
DOI  | 
MR 4682418 
[30] Yu, S., Sun, Q., Yang, Z.: 
Recent advances on false information governance. Control Theory Technol. 21 (2023), 1, 110-113. 
DOI  | 
MR 4253447 
[31] Zhang, H., Qin, H., Chen, G.: 
Bayesian Nash equilibrium seeking for multi-agent incomplete-information aggregative games. Kybernetika (2023), 575-591, 09 2023. 
DOI  | 
MR 4660379 
[32] Zhang, T. Y., Ye, D.: 
False data injection attacks with complete stealthiness in cyber-physical systems: A self-generated approach. Automatica 120 (2020), 109117. 
DOI  | 
MR 4118793