[6] Asano, N.: Report on Multiple Zeta-Functions and Dedekind Sums: Masters Thesis. Nagoya University, Nagoya (2003).
[7] Chakraborty, K., Kanemitsu, S., Kuzumaki, T.:
Seeing the invisible: Around generalized Kubert functions. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 47 (2018), 185-195.
MR 3849202
[8] Chakraborty, K., Kanemitsu, S., Kuzumaki, T.: Modular Relations and Parity in Number Theory. Infosys Science Foundation Series in Mathematical Sciences. Springer, Singapore (2025).
[9] Chapman, R.:
Limit formulas for non-modular Eisenstein series. J. Comb. Number Theory 1 (2009), 127-132.
MR 2663649 |
Zbl 1242.11066
[10] Dedekind, R.:
Erläuterungen zu zwei Fragmenten von Riemann. Bernhard Riemanns gesammelte mathematische Werke und wissenschaftlichen Nachlass B. G. Teubner, Leipzig (1892), 466-478 German \99999JFM99999 24.0021.04.
MR 0052364
[11] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.:
Higher Transcendental Functions. Vol. I. McGraw-Hill, New York (1953).
MR 0058756 |
Zbl 0051.30303
[12] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.:
Higher Transcendental Functions. Vol. II. McGraw-Hill, New York (1953).
MR 0058756 |
Zbl 0052.29502
[13] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.:
Higher Transcendental Functions. Vol. III. McGraw-Hill, New York (1955).
MR 0066496 |
Zbl 0064.06302
[16] Estermann, T.:
On the representation of a number as the sum of two products. Proc. Lond. Math. Soc. (2) 31 (1930), 123-133 \99999JFM99999 56.0174.02.
DOI 10.1112/jlms/s1-5.2.131 |
MR 1577452
[18] Hiramatsu, T., Mimura, Y., Takada, T.:
Dedekind sums and transformation formulas. RIMS Kokyuroku 572 (1985), 151-175.
MR 0862858 |
Zbl 0639.10005
[23] Kanemitsu, S., Kuzumaki, T.:
Transformation formulas for Lambert series. Šiauliai Math. Semin. 4 (2009), 105-123.
MR 2530201 |
Zbl 1208.11062
[25] Kanemitsu, S., Tsukada, H.:
Contributions to the Theory of Zeta-Functions: The Modular Relation Supremacy. Series on Number Theory and Its Applications 10. World Scientific, Hackensack (2014).
DOI 10.1142/8711 |
MR 3329611 |
Zbl 1311.11003
[29] Lang, S.:
Cyclotomic Fields. Graduate Texts in Mathematics 69. Springer, Berlin (1978).
MR 0485768 |
Zbl 0395.12005
[30] Lang, S.:
Cyclotomic Fields. II. Graduate Texts in Mathematics 59. Springer, Berlin (1980).
MR 0566952 |
Zbl 0435.12001
[39] Mikolás, M.:
Mellinsche Transformation und Orthogonalität bei $\zeta(s,u)$: Verallgemeinerung der Riemannschen Funktionalgleichung von $\zeta(s)$. Acta Sci. Math. 17 (1956), 143-164 German.
MR 0089864 |
Zbl 0073.06403
[41] Mikolás, M.:
Über gewisse Lambertsche Reihen. I: Verallgemeinerung der Modulfunktionen $\eta(\tau)$ und ihrer Dedekindschen Transformationsformel. Math. Z. 68 (1957), 100-110 German.
DOI 10.1007/BF01160334 |
MR 0091302 |
Zbl 0078.07003
[42] Milnor, J.:
On polylogarithms, Hurwitz zeta-functions, and the Kubert identities. Enseign. Math., II. Sér. 29 (1983), 281-322.
MR 0719313 |
Zbl 0557.10031
[46] Riemann, B.:
The Collected Works of Bernhard Riemann. Dover, New York (1953).
Zbl 1369.01040
[49] Stark, H. M.:
Dirichlet's class number formula revisited. A Tribute to Emil Grosswald: Number Theory and Related Analysis Contemporary Mathematics 143. AMS, Providence (1993), 571-577.
DOI 10.1090/conm/143 |
MR 1210543 |
Zbl 0804.11060
[53] Yamamoto, Y.:
Dirichlet series with periodic coefficients. Algebraic Number Theory Japan Society for the Promotion of Science, Tokyo (1977), 275-289.
MR 0450213 |
Zbl 0371.10028