Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
$[m,C]$-expensive operator; $[m,C]$-expansive tuple of operator; Banach space
Summary:
We present $m$-expansive tuples of commuting operators in a complex Banach space, expanding upon the concept of $m$-isometric tuples. We provide a characterization of the joint approximate point spectrum of these tuples. Furthermore, we investigate a multivariable extension of these single-variable $[m,C]$-expansive operators discussed in M. Chō, I. Hur, J. E. Lee (2024) and delve into several fundamental properties associated with them.
References:
[1] Agler, J., Stankus, M.: $m$-isometric transformations of Hilbert space. I. Integral Equations Oper. Theory 21 (1995), 383-429. DOI 10.1007/BF01222016 | MR 1321694 | Zbl 0836.47008
[2] Ambrozie, C.-G., Engliš, M., Müller, V.: Operator tuples and analytic models over general domains in $\Bbb{C}^n$. J. Oper. Theory 47 (2002), 287-302. MR 1911848 | Zbl 1019.47015
[3] Amor, A. Ben: An extension of Henrici theorem for the joint approximate spectrum of commuting spectral operators. J. Aust. Math. Soc. 75 (2003), 233-245. DOI 10.1017/S1446788700003748 | MR 2000431 | Zbl 1060.47007
[4] Bermúdez, T., Martinón, A., Müller, V.: $(m,q)$-isometries on metric spaces. J. Oper. Theory 72 (2014), 313-328. DOI 10.7900/jot.2013jan29.1996 | MR 3272034 | Zbl 1363.54041
[5] Bonsall, F. F., Duncan, J.: Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras. London Mathematical Society Lecture Note Series 2. Cambridge University Press, London (1971). DOI 10.1017/CBO9781107359895 | MR 0288583 | Zbl 0207.44802
[6] Chō, M., Hur, I., Lee, J. E.: Generalization of expansive operators. Math. Inequal. Appl. 27 (2024), 159-171. DOI 10.7153/mia-2024-27-12 | MR 4702249 | Zbl 07926904
[7] Chō, M., Ko, E., Lee, J. E.: On $(m,C)$-isometric operators. Complex Anal. Oper. Theory 10 (2016), 1679-1694. DOI 10.1007/s11785-016-0549-0 | MR 3558362 | Zbl 1373.47006
[8] Chō, M., Lee, J. E., Motoyoshi, H.: On $[m,C]$-isometric operators. Filomat 31 (2017), 2073-2080. DOI 10.2298/FIL1707073C | MR 3635243 | Zbl 1484.47011
[9] Chō, M., Tanahashi, K.: On conjugations for Banach spaces. Sci. Math. Jpn. 81 (2018), 37-45. DOI 10.32219/isms.81.1_37 | MR 3792440 | Zbl 06902693
[10] Chō, M., Żelazko, W.: On geometric spectral radius of commuting $n$-tuples of operators. Hokkaido Math. J. 21 (1992), 251-258. DOI 10.14492/hokmj/1381413680 | MR 1169792 | Zbl 0784.47004
[11] Choi, M. D., Davis, C.: The spectral mapping theorem for joint approximate point spectrum. Bull. Am. Math. Soc. 80 (1974), 317-321. DOI 10.1090/S0002-9904-1974-13481-6 | MR 0333780 | Zbl 0276.47001
[12] Gleason, J., Richter, S.: $m$-isometric commuting tuples of operators on a Hilbert space. Integral Equations Oper. Theory 56 (2006), 181-196. DOI 10.1007/s00020-006-1424-6 | MR 2264515 | Zbl 1112.47003
[13] Gu, C.: The $(m,q)$-isometric weighted shifts on $l_p$ spaces. Integral Equations Oper. Theory 82 (2015), 157-187. DOI 10.1007/s00020-015-2234-5 | MR 3345637 | Zbl 1314.47048
[14] Hoffmann, P. H. W., Mackey, M.: $(m,p)$-and $(m,\infty)$-isometric operator tuples on normed spaces. Asian-Eur. J. Math. 8 (2015), Article ID 1550022, 32 pages. DOI 10.1142/S1793557115500229 | MR 3354483 | Zbl 1325.47014
[15] Mahmoud, S. A. O. A., Chō, M., Lee, J. E.: On $(m,C)$-isometric commuting tuples of operators on a Hilbert space. Result. Math. 73 (2018), Article ID 51, 31 pages. DOI 10.1007/s00025-018-0810-0 | MR 3770897 | Zbl 1512.47042
[16] Motoyashi, H.: Linear operators and conjugations on a Banach space. Acta Sci. Math. 85 (2019), 325-336. DOI 10.14232/actasm-018-801-y | MR 3967893 | Zbl 1449.47041
[17] Laursen, K. B., Neumann, M. M.: An Introduction to Local Spectral Theory. London Mathematical Society Monographs. New Series 20. Clarendon Press, Oxford (2000). DOI 10.1093/oso/9780198523819.002.0001 | MR 1747914 | Zbl 0957.47004
[18] Taylor, J. L.: A joint spectrum for several commuting operators. J. Funct. Anal. 6 (1970), 172-191. DOI 10.1016/0022-1236(70)90055-8 | MR 0268706 | Zbl 0233.47024
[19] Taylor, J. L.: The analytic-functional calculus for several commuting operators. Acta Math. 125 (1970), 1-38. DOI 10.1007/BF02392329 | MR 0271741 | Zbl 0233.47025
Partner of
EuDML logo