Previous |  Up |  Next

Article

Title: On weakly $(1,n)$-ideals and weakly $n$-ideals (English)
Author: Ersoy, Bayram Ali
Author: Koç, Suat
Author: Tekir, Ünsal
Author: Yeşilot, Gürsel
Author: Yıldız, Eda
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 2
Year: 2025
Pages: 611-628
Summary lang: English
.
Category: math
.
Summary: We study weakly $(1,n)$-ideals and weakly $n$-ideals in commutative rings. Let $A$ be a commutative ring with a nonzero identity and $I$ be a proper ideal of $A$. Then $I$ is said to be a weakly $(1,n)$-ideal (or weakly $n$-ideal) if whenever $0\neq abc\in I$ for some nonunits $a,b,c\in A$ (or $0\neq ab\in I$ for some $a,b\in A)$, then either $ab\in I$ or $c\in \mathfrak {N}(A)$ (or $a\in I$ or $b\in \mathfrak {N}(A)$, respectively), where $\mathfrak {N}(A)$ is the set of all nilpotent elements of $A$. Many examples and properties of weakly $(1,n)$-ideals and weakly $n$-ideals are given. We characterize all rings in which every proper ideal is a weakly $(1,n)$-ideal and weakly $n$-ideal. Furthermore, we investigate both weakly $(1,n)$-ideals and weakly $n$-ideals in amalgamated algebras along an ideal. (English)
Keyword: 1-absorbing primary ideal
Keyword: $n$-ideal
Keyword: weakly $n$-ideal
Keyword: weakly $(1,n)$-ideal
MSC: 13A15
DOI: 10.21136/CMJ.2025.0337-24
.
Date available: 2025-05-20T11:48:45Z
Last updated: 2025-05-26
Stable URL: http://hdl.handle.net/10338.dmlcz/152961
.
Reference: [1] Almahdi, F. A. A., Bouba, E. M., Koam, A. N. A.: On strongly 1-absorbing primary ideals of commutative rings.Bull. Korean Math. Soc. 57 (2020), 1205-1213. Zbl 1454.13004, MR 4155008, 10.4134/BKMS.b190877
Reference: [2] Anderson, D. D., Smith, E.: Weakly prime ideals.Houston J. Math. 29 (2003), 831-840. Zbl 1086.13500, MR 2045656
Reference: [3] Anderson, D. D., Winders, M.: Idealization of a module.J. Commut. Algebra 1 (2009), 3-56. Zbl 1194.13002, MR 2462381, 10.1216/JCA-2009-1-1-3
Reference: [4] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra.Addison-Wesley, Reading (1969). Zbl 0175.03601, MR 0242802
Reference: [5] Badawi, A.: On 2-absorbing ideals of commutative rings.Bull. Aust. Math. Soc. 75 (2007), 417-429. Zbl 1120.13004, MR 2331019, 10.1017/S0004972700039344
Reference: [6] Badawi, A., Celikel, E. Y.: On 1-absorbing primary ideals of commutative rings.J. Algebra Appl. 19 (2020) Article ID 2050111, 12 pages. Zbl 1440.13008, MR 4120088, 10.1142/S021949882050111X
Reference: [7] Badawi, A., Celikel, E. Y.: On weakly 1-absorbing primary ideals of commutative rings.Available at https://arxiv.org/abs/2002.12608 (2020), 13 pages. MR 4414148, 10.48550/arXiv.2002.12608
Reference: [8] Badawi, A., Darani, A. Y.: On weakly 2-absorbing ideals of commutative rings.Houston J. Math. 39 (2013), 441-452. Zbl 1278.13001, MR 3080448
Reference: [9] Badawi, A., Tekir, U., Yetkin, E.: On 2-absorbing primary ideals in commutative rings.Bull. Korean Math. Soc. 51 (2014), 1163-1173. Zbl 1308.13001, MR 3248714, 10.4134/BKMS.2014.51.4.1163
Reference: [10] Beddani, C., Messirdi, W.: 2-prime ideals and their applications.J. Algebra Appl. 15 (2016), Article ID 1650051, 11 pages. Zbl 1338.13038, MR 3454713, 10.1142/S0219498816500511
Reference: [11] Chhiti, M., Mahdou, N., Tamekkante, M.: Clean property in amalgamated algebras along an ideal.Hacet. J. Math. Stat. 44 (2015), 41-49. Zbl 1320.13020, MR 3363762, 10.15672/HJMS.2015449103
Reference: [12] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Amalgamated algebras along an ideal.Commutative Algebra and Its Applications Walter de Gruyter, Berlin (2009), 155-172. Zbl 1177.13043, MR 2606283, 10.1515/9783110213188.155
Reference: [13] D'Anna, M., Finocchiaro, C. A., Fontana, M.: Properties of chains of prime ideals in an amalgamated algebra along an ideal.J. Pure Appl. Algebra 214 (2010), 1633-1641. Zbl 1191.13006, MR 2593689, 10.1016/j.jpaa.2009.12.008
Reference: [14] Huckaba, J. A.: Commutative Rings with Zero Divisors.Monographs and Textbooks in Pure and Applied Mathematics 117. Marcel Dekker, New York (1988). Zbl 0637.13001, MR 0938741
Reference: [15] Issoual, M., Mahdou, N., Moutui, M. A. S.: On $n$-absorbing and strongly $n$-absorbing ideals of amalgamation.J. Algebra Appl. 19 (2020), Article ID 2050199, 16 pages. Zbl 1446.13002, MR 4140139, 10.1142/S0219498820501996
Reference: [16] Khalfi, A. El, Kim, H., Mahdou, N.: Amalgamated algebras issued from $\phi$-chained rings and $\phi$-pseudo-valuation rings.Bull. Iran. Math. Soc. 47 (2021), 1599-1609. Zbl 1475.13015, MR 4308883, 10.1007/s41980-020-00461-y
Reference: [17] Koç, S., Tekir, Ü., Ulucak, G.: On strongly quasi primary ideals.Bull. Korean Math. Soc. 56 (2019), 729-743. Zbl 1419.13040, MR 3960633, 10.4134/BKMS.b180522
Reference: [18] Koç, S., Tekir, Ü., z, E. Yıldı: On weakly 1-absorbing prime ideals.Ric. Mat. 72 (2023), 723-738. Zbl 1530.13005, MR 4649462, 10.1007/s11587-020-00550-4
Reference: [19] Koç, S., Uregen, R. N., Tekir, Ü.: On 2-absorbing quasi primary submodules.Filomat 31 (2017), 2943-2950. Zbl 1488.13011, MR 3639383, 10.2298/FIL1710943K
Reference: [20] Mahdou, N., Moutui, M. A. S.: Gaussian and Prüfer conditions in bi-amalgamated algebras.Czech. Math. J. 70 (2020), 381-391. Zbl 1513.13050, MR 4111849, 10.21136/CMJ.2019.0335-18
Reference: [21] Mahdou, N., Moutui, M. A. S., Zahir, Y.: Weakly prime ideals issued from an amalgamated algebra.Hacet. J. Math. Stat. 49 (2020), 1159-1167. Zbl 1488.13061, MR 4199068, 10.15672/hujms.557437
Reference: [22] Mohamadian, R.: $r$-ideals in commutative rings.Turk. J. Math. 39 (2015), 733-749. Zbl 1348.13003, MR 3395802, 10.3906/mat-1503-35
Reference: [23] Nagata, M.: Local Rings.Interscience Tracts in Pure and Applied Mathematics. John Wiley and Sons, New York (1962). Zbl 0123.03402, MR 0155856
Reference: [24] Tekir, Ü., Koç, S., Oral, K. H.: $n$-ideals of commutative rings.Filomat 31 (2017), 2933-2941. Zbl 1488.13016, MR 3639382, 10.2298/FIL1710933T
Reference: [25] Tekir, Ü., Koç, S., Oral, K. H., Shum, K. P.: On 2-absorbing quasi-primary ideals in commutative rings.Commun. Math. Stat. 4 (2016), 55-62. Zbl 1338.13007, MR 3475842, 10.1007/s40304-015-0075-9
Reference: [26] Yassine, A., Nikmehr, M. J., Nikandish, R.: On 1-absorbing prime ideals of commutative rings.J. Algebra Appl. 20 (2021), Article ID 2150175, 12 pages. Zbl 1479.13006, MR 4326079, 10.1142/S0219498821501759
Reference: [27] z, E. Yıldı, Tekir, U., Koc, S.: On $\phi$-1-absorbing prime ideals.Beitr. Algebra Geom. 62 (2021), 907-918. Zbl 1475.13006, MR 4333247, 10.1007/s13366-020-00557-w
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo