Previous |  Up |  Next

Article

Title: Periodic analogs of Wigner transforms and Weyl transforms (English)
Author: Molahajloo, Shahla
Author: Wong, Man Wah
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 2
Year: 2025
Pages: 629-644
Summary lang: English
.
Category: math
.
Summary: The periodic Wigner transform is introduced. We show that most of the properties of the Euclidean Wigner transform are satisfied in this new setting. Using the periodic Wigner transform, we define the periodic Weyl transform. $L^2$-boundedness of periodic Weyl transforms are investigated. We give a necessary and sufficient condition on the symbol to ensure that the corresponding periodic Weyl transform is a Hilbert-Schmidt operator. We show that the product of two periodic Weyl transforms and the adjoint of a periodic Weyl transform are again periodic Weyl transforms. The connection between pseudo-differential operators on ${\mathbb S}^1$ and periodic Weyl transforms is given. (English)
Keyword: Fourier-Wigner transform
Keyword: Wigner transform
Keyword: Moyal identity
Keyword: time and frequency marginal condition
Keyword: reconstruction formula
Keyword: symbol
Keyword: Weyl transform
Keyword: kernel
Keyword: Hilbert-Schmidt operator
Keyword: Weyl calculus
MSC: 47F05
MSC: 47G30
DOI: 10.21136/CMJ.2025.0369-24
.
Date available: 2025-05-20T11:49:15Z
Last updated: 2025-05-26
Stable URL: http://hdl.handle.net/10338.dmlcz/152962
.
Reference: [1] Cohen, L.: The Weyl Operator and its Generalization.Pseudo-Differential Operators. Theory and Applications 9. Birkhäuser, Basel (2013). Zbl 1393.47001, MR 3012699, 10.1007/978-3-0348-0294-9
Reference: [2] Dasgupta, A., Wong, M. W.: Pseudo-differential operators on the affine group.Pseudo- Differential Operators: Groups, Geometry and Applications Trends in Mathematics. Birkhäuser, Basel (2017), 1-14. Zbl 1377.47018, MR 3708360, 10.1007/978-3-319-47512-7_1
Reference: [3] Duan, X., Wong, M. W.: Pseudo-differential operators for Weyl transforms.Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 75 (2013), 3-12. Zbl 1299.47095, MR 3161943
Reference: [4] Molahajloo, S.: Pseudo-differential operators on $\Bbb{Z}$.Pseudo-Differential Operators. Complex Analysis and Partial Differential Equations Operator Theory: Advances and Applications 205. Birkhäuser, Basel (2010), 213-221. Zbl 1227.47028, MR 2664583, 10.1007/978-3-0346-0198-6_12
Reference: [5] Molahajloo, S.: Pseudo-differential operators, Wigner transforms and Weyl transforms on the Poincaré unit disk.Complex Anal. Oper. Theory 12 (2018), 811-833. Zbl 1466.47034, MR 3770371, 10.1007/s11785-018-0777-6
Reference: [6] Molahajloo, S., Wong, M. W.: Pseudo-differential operators on $\Bbb{S}^1$.New Developments in Pseudo-Differential Operators Operator Theory: Advances and Applications 189. Birkhäuser, Basel (2009), 297-306. Zbl 1210.47073, MR 2509104, 10.1007/978-3-7643-8969-7_15
Reference: [7] Molahajloo, S., Wong, M. W.: Ellipticity, Fredholmness and spectral invariance of pseudo- differential operators on $\Bbb{S}^1$.J. Pseudo-Differ. Oper. Appl. 1 (2010), 183-205. Zbl 1222.47075, MR 2679899, 10.1007/s11868-010-0010-5
Reference: [8] Molahajloo, S., Wong, M. W.: Discrete analogs of Wigner transforms and Weyl transforms.Analysis of Pseudo-Differential Operators Trends in Mathematics. Birkhäuser, Cham (2019), 1-20. Zbl 07121761, MR 4012640, 10.1007/978-3-030-05168-6_1
Reference: [9] Peng, L., Zhao, J.: Weyl transforms associated with the Heisenberg group.Bull. Sci. Math. 132 (2008), 78-86. Zbl 1136.43008, MR 2417612, 10.1016/j.bulsci.2007.07.002
Reference: [10] Peng, L., Zhao, J.: Weyl transforms on the upper half plane.Rev. Mat. Complut. 23 (2010), 77-95. Zbl 1202.44003, MR 2578572, 10.1007/s13163-009-0013-z
Reference: [11] Tate, T.: Weyl pseudo-differential operator and Wigner transform on the Poincaré disk.Ann. Global Anal. Geom. 22 (2002), 29-48. Zbl 1022.58011, MR 1916978, 10.1023/A:1016253829938
Reference: [12] Wong, M. W.: Weyl Transforms.Universitext. Springer, New York (1998). Zbl 0908.44002, MR 1639461, 10.1007/b98973
Reference: [13] Wong, M. W.: Discrete Fourier Analysis.Pseudo-Differential Operators. Theory and Applications 5. Birkhäuser, Basel (2011). Zbl 1226.42001, MR 2809393, 10.1007/978-3-0348-0116-4
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo