[1] Abbasbandy, S., Nieto, J. J., Alavi, M.:
Tuning of reachable set in one dimensional fuzzy differential inclusions. Chaos Solitons Fractals 26 (2005), 5, 1337-1341.
DOI |
MR 2149318
[2] Agarwal, R. P., O'Regan, D., Lakshmikantham, V.:
A stacking theorem approach for fuzzy differential equations. Nonlinear Analysis: Theory, Methods Appl. 55 (2003), 3, 299-312.
DOI |
MR 2007476
[3] Ahmad, M. Z., Hasan, M. K., Baets, B. De:
Analytical and numerical solutions of fuzzy differential equations. Inform. Sci. 236 (2013), 156-167.
DOI |
MR 3042326
[4] Ahmadi, M. B., Kiani, N. A., Mikaeilvand, N.:
Laplace transform formula on fuzzy $n$th-order derivative and its application in fuzzy ordinary differential equations. Soft Comput. 18 (2014), 12, 2461-2469.
DOI
[5] Ahmadian, A., Salahshour, S., Chan, C. S., Baleanu, D.:
Numerical solutions of fuzzy differential equations by an efficient Runge-Kutta method with generalized differentiability. Fuzzy Sets Systems 331 (2018), 47-67.
DOI |
MR 3733267
[6] Ahmady, N., Allahviranloo, T., Ahmady, E.:
A modified Euler method for solving fuzzy differential equations under generalized differentiability. Comput. Appl. Mat. 39 (2020), 1-21.
DOI |
MR 4075468
[7] Akın, Ö., Khaniyev, T., Oruç, Ö., Türkşen, I. B.:
An algorithm for the solution of second order fuzzy initial value problems. Expert Systems Appl. 40 (2013), 953-957.
DOI
[8] Akram, M., Muhammad, G., Allahviranloo, T., Pedrycz, W.:
Solution of initial-value problem for linear third-order fuzzy differential equations. Comput. Appl. Math. 41 (2022), 8, 398.
DOI |
MR 4512249
[9] Alamin, A., Gazi, K. H., Mondal, S. P.:
Solution of second order linear homogeneous fuzzy difference equation with constant coefficients by geometric approach. J. Decision Anal. Intell. Comput. 4 (2024), 1, 241-252.
DOI
[10] Alamin, A., Rahaman, M., Mondal, S. P.:
Geometric approach for solving first order non-homogenous fuzzy difference equation. Spectrum Oper. Res. 2 (2025), 1, 61-71.
DOI
[11] Alavi, S. M.:
A method for second-order linear fuzzy two-point boundary value problems based on the Hukuhara differentiability. Comput. Methods Differ. Equations 11 (2023), 3, 576-588.
DOI |
MR 4603612
[12] Alguliyev, R., Aliguliyev, R., Sukhostat, L.:
Method for quantitative risk assessment of cyber-physical systems based on vulnerability analysis. Kybernetika 60 (2024), 6, 779-796.
DOI
[13] Aliev, F. A., Niftiyev, A. A., Zeynalov, C. I.:
Optimal synthesis problem for the fuzzy systems. Optim. Control Appl. Meth. 32 (2011), 660-667.
DOI |
MR 2871836
[14] Alikhani, R., Mostafazadeh, M.:
First order linear fuzzy differential equations with fuzzy variable coefficients. Comput. Methods Differ. Equations 9 (2021), 1, 1-21.
DOI |
MR 4214720
[15] Allahviranloo, T., Abbasbandy, S., Ahmady, N., Ahmady, E.:
Improved predictor-corrector method for solving fuzzy initial value problems. Inform. Sci. 179 (2009), 7, 945-955.
DOI |
MR 2494128
[16] Allahviranloo, T., Abbasbandy, S., Behzadi, S. S.:
Solving nonlinear fuzzy differential equations by using fuzzy variational iteration method. Soft Comput. 18 (2014), 2191-2200.
DOI |
MR 3524863
[17] Allahviranloo, T., Abbasbandy, S., Salahshour, S., Hakimzadeh, A.:
A new method for solving fuzzy linear differential equations. Computing 92 (2011), 181-197.
DOI |
MR 2794923
[18] Allahviranloo, T., Ahmadi, M. B.:
Fuzzy Laplace transforms. Soft Computing 14 (2010), 235-243.
DOI
[19] Allahviranloo, T., Ahmady, N., Ahmady, E.:
Numerical solution of fuzzy differential equations by predictor-corrector method. Inform. Sci. 177 (2007), 7, 1633-1647.
DOI |
MR 2303176
[20] Allahviranloo, T., Ahmady, N., Ahmady, E.:
$n$th-order fuzzy linear differential equations. Inform. Sci. 178 (2008), 5, 1309-1324.
DOI |
MR 2379397
[21] Allahviranloo, T., Ahmady, N., Ahmady, E.:
A method for solving nth order fuzzy linear differential equations. Int. J. Comput. Math. 86 (2009), 4, 730-742.
DOI |
MR 2514166
[22] Allahviranloo, T., Chehlabi, M.:
Solving fuzzy differential equations based on the length function properties. Soft Comput. 19 (2015), 307-320.
DOI
[23] Allahviranloo, T., Gouyandeh, Z., Armand, A., Hasanoglu, A.:
On fuzzy solutions for heat equation based on generalized Hukuhara differentiability. Fuzzy Sets Systems 265 (2015), 1-23.
DOI |
MR 3310324
[24] Allahviranloo, T., Kermani, M. A.:
Numerical methods for fuzzy linear partial differential equations under new definition for derivative. Iranian J. Fuzzy Systems 7 (2010), 3, 33-50.
DOI |
MR 2722019
[25] Allahviranloo, T., Kiani, N. A., Barkhordari, M.:
Toward the existence and uniqueness of solutions of second-order fuzzy differential equations. Inform. Sci. 179 (2009), 8, 1207-1215.
DOI |
MR 2502096
[26] Allahviranloo, T., Kiani, N. A., Motamedi, N.:
Solving fuzzy differential equations by differential transformation method. Inform. Sci. 179 (2009), 7, 956-966.
DOI |
MR 2494129
[27] Allahviranloo, T., Shafiee, M., Nejatbakhsh, Y.:
A note on "Fuzzy differential equations and the extension principle". Inform. Sci. 179 (2009), 2049-2051.
DOI |
MR 2530972
[28] Arqub, O. Abu, Al-Smadi, M., Momani, S., Hayat, T.:
Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. 20 (2016), 3283-3302.
DOI
[29] Amrahov, Ş. E., Askerzade, I.:
Strong solutions of the fuzzy linear systems. CMES: Computer Model. Engrg. Sci. 76 (2011), 3-4, 207-216.
DOI |
MR 2893971
[30] Amrahov, Ş. E., Gasilov, N. A., Fatullayev, A. G.:
A new approach to a fuzzy time-optimal control problem. CMES: Computer Model. Engrg. Sci. 99 (2014), 5, 351-369.
DOI |
MR 3243120
[31] Amrahov, Ş. E., Khastan, A., Gasilov, N., Fatullayev, A. G.:
Relationship between Bede-Gal differentiable set-valued functions and their associated support functions. Fuzzy Sets Systems 295 (2016), 57-71.
DOI |
MR 3488877
[32] Arif, M. S., Shatanawi, W., Nawaz, Y.:
A computational time integrator for heat and mass transfer modeling of boundary layer flow using fuzzy parameters. Partial Differ. Equations Appl. Math.13 (2025), 101113.
DOI
[33] Ashraf, S., Ahmed, I., Rashmanlou, H.:
A new technique to solve fuzzy differential equations. J. Intell. Fuzzy Systems 34 (2018), 4, 2171-2176.
DOI
[34] Azbelev, N. V., Maksimov, V. P., Rakhmatullina, L. F.:
Introduction to the Theory of Functional Differential Equations: Methods and Applications. Hindawi Pub. Co., 2007.
MR 2319815
[35] Babolian, E., Sadeghi, H., Javadi, S.:
Numerically solution of fuzzy differential equations by Adomian method. Appl. Math. Computation 149 (2004), 2, 547-557.
DOI |
MR 2033089
[36] Balasubramaniam, P., Muralisankar, S.:
Existence and uniqueness of a fuzzy solution for the nonlinear fuzzy neutral functional differential equation. Computers Math. Appl. 42 (2001), 6-7, 961-967.
DOI |
MR 1846200
[37] Banks, H. T., Jacobs, M. Q.:
A differential calculus for multifunctions. J. Math. Anal. Appl. 29 (1970), 246-272.
DOI |
MR 0265937
[38] Barros, L. C., Gomes, L. T., Tonelli, P. A.:
Fuzzy differential equations: An approach via fuzzification of the derivative operator. Fuzzy Sets Systems 230 (2013), 39-52.
DOI 10.1016/j.fss.2013.03.004 |
MR 3104326
[39] Barros, L. C. de, Pedro, F. Santo:
Fuzzy differential equations with interactive derivative. Fuzzy Sets Systems 309 (2017), 64-80.
DOI |
MR 3582751
[40] Bartwal, P., Upreti, H., Pandey, A. K., Joshi, N., Joshi, B. P.:
Application of modified Fourier's law in a fuzzy environment to explore the tangent hyperbolic fluid flow over a non-flat stretched sheet using the LWCM approach. Int. Commun. Heat Mass Transfer 153 (2024), 107332.
DOI
[41] Barzinji, K., Maan, N., Aris, N.:
Linear fuzzy delay differential system: Analysis on stability of steady state. Matematika 30 (2014), 1a, 1-7.
DOI |
MR 3300194
[42] Bede, B.:
A note on two-point boundary value problems associated with non-linear fuzzy differential equations. Fuzzy Sets Systems 157 (2006), 986-989.
DOI |
MR 2212488
[43] Bede, B.:
Note on Numerical solutions of fuzzy differential equations by predictor-corrector method. Inform. Sci. 178 (2008), 7, 1917-1922.
DOI |
MR 2404488
[44] Bede, B., Gal, S. G.:
Almost periodic fuzzy-number-valued functions. Fuzzy Sets Systems 147 (2004), 385-403.
DOI |
MR 2100833
[45] Bede, B., Gal, S. G.:
Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Systems 151 (2005), 581-599.
DOI |
MR 2126175
[46] Bede, B., Rudas, I. J., Bencsik, A. L.:
First order linear fuzzy differential equations under generalized differentiability. Inform. Sci. 177 (2007), 1648-1662.
DOI |
MR 2303177
[47] Bede, B., Rudas, I. J.:
Shooting method for fuzzy two-point boundary value problems. In: Proc. of 2012 Annual Meeting of the NAFIPS (North American Fuzzy Information Processing Society), (2012), pp. 1-4.
DOI
[48] Bede, B., Stefanini, L.:
Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Systems 230 (2013), 119-141.
DOI |
MR 3104331
[49] Bejines, C.:
Aggregation of fuzzy vector spaces. Kybernetika 59 (2023), 5, 752-767.
DOI |
MR 4681021
[50] Bertone, A. M., Jafelice, R. M., Barros, L. C. de, Bassanezi, R. C.:
On fuzzy solutions for partial differential equations. Fuzzy Sets Systems 219 (2013), 68-80.
DOI |
MR 3035734
[51] Bhaskar, T. G., Lakshmikantham, V., Devi, V.:
Revisiting fuzzy differential equations. Nonlinear Analysis: Theory Methods Appl. 58 (2004), 3-4, 351-358.
DOI |
MR 2073530
[52] Bhattacharyya, R., Jha, B. K.:
Analyzing fuzzy boundary value problems: a study on the influence of mitochondria and ER fluxes on calcium ions in neuron cells. J. Bioenergetics Biomembranes 56 (2024), 1, 15-29.
DOI
[53] Blagodatskikh, V. I., Filippov, A. F.:
Differential inclusions and optimal control. In: Proc. Steklov Inst. Math. 169 (1986), 199-259.
MR 0836575
[54] Buckley, J. J., Feuring, T.:
Introduction to fuzzy partial differential equations. Fuzzy Sets Systems 105 (1999), 241-248.
DOI |
MR 1695579
[55] Buckley, J. J., Feuring, T.:
Fuzzy differential equations. Fuzzy Sets Systems 110 (2000), 43-54.
DOI |
MR 1748107
[56] Buckley, J. J., Feuring, T.:
Fuzzy initial value problem for Nth-order linear differential equations. Fuzzy Sets Syst. 121 (2001), 247-255.
DOI |
MR 1834509
[57] Buckley, J. J., Feuring, T., Hayashi, Y.:
Linear systems of first order ordinary differential equations: Fuzzy initial conditions. Soft Computing 6 (2002), 415-421.
DOI |
MR 1748107
[58] Cabral, V. M., Barros, L. C.:
Fuzzy differential equation with completely correlated parameters. Fuzzy Sets Systems 265 (2015), 86-98.
DOI |
MR 3310328
[59] Cabral, V. M., Barros, L. C.:
On differential equations with interactive fuzzy parameter via t-norms. Fuzzy Sets Systems 358 (2019), 97-107.
DOI |
MR 3913070
[60] Ceylan, T.:
On interactive solution for two point fuzzy boundary value problem. J. Universal Math. 7 (2024), 2, 85-98.
DOI
[61] Ceylan, T., Altinisik, N.:
Two point fuzzy boundary value problem with eigenvalue parameter contained in the boundary condition. Malaya J. Matematik 6 (2018), 4, 766-773.
DOI |
MR 3891651
[62] Chalco-Cano, Y., Román-Flores, H.:
On the new solution of fuzzy differential equations. Chaos Solitons Fractals 38 (2008), 1, 112-119.
DOI |
MR 2417648
[63] Chalco-Cano, Y., Román-Flores, H.:
Comparison between some approaches to solve fuzzy differential equations. Fuzzy Sets Systems 160 (2009), 11, 1517-1527.
DOI |
MR 2510139
[64] Chalco-Cano, Y., Román-Flores, H.:
Some remarks on fuzzy differential equations via differential inclusions. Fuzzy Sets Systems 230 (2013), 3-20.
DOI |
MR 3104324
[65] Chalco-Cano, Y., Román-Flores, H., Jimenez-Gamero, M. D.:
Generalized derivative and $\pi$-derivative for set-valued functions. Inform. Sci. 181 (2011), 11, 2177-2188.
DOI |
MR 2781778
[66] Chang, S. L., Zadeh, L. A.:
On fuzzy mapping and control. IEEE Trans. Systems Man Cybernet. 2 (1972), 330-340.
DOI |
MR 0363548
[67] Chehlabi, M.:
Continuous solutions to a class of first-order fuzzy differential equations with discontinuous coefficients. Comput. Appl. Math. 37 (2018), 5058-5081.
DOI |
MR 3848581
[68] Chehlabi, M., Allahviranlo, T.:
Positive or negative solutions to first-order fully fuzzy linear differential equations under generalized differentiability. Appl. Soft Comput. 70 (2018), 359-370.
DOI
[69] Chen, M., Han, C.:
Some topological properties of solutions to fuzzy differential systems. Inform. Sci. 197 (2012), 207-214.
DOI |
MR 2910017
[70] Chen, M., Wu, C., Xue, X., Liu, G.:
On fuzzy boundary value problems. Inform. Sci. 178 (2008), 1877-1892.
DOI |
MR 2404485
[71] Chen, M., Wu, C., Xue, X., Liu, G.:
Two-point boundary value problems of undamped uncertain dynamical systems. Fuzzy Sets Systems 159 (2008), 2077-2089.
DOI |
MR 2431801
[72] Chen, Y. Y., Chang, Y. T., Chen, B. S.:
Fuzzy solutions to partial differential equations: Adaptive approach. IEEE Trans. Fuzzy Systems 17 (2009), 116-127.
DOI
[73] Cruz-Suarez, H., Montes-de-Oca, R., Ortega-Gutiarrez, R. I.:
An extended version of average Markov decision processes on discrete spaces under fuzzy environment. Kybernetika 59 (2023), 1, 160-178.
DOI |
MR 4567846
[74] Congxin, W., Shiji, S.:
Existence theorem to the Cauchy problem of fuzzy differential equations under compactness-type conditions. Inform. Sci. 108 (1998), 1-4, 123-134.
DOI |
MR 1632507
[75] Citil, H. G.:
Comparisons of the exact and the approximate solutions of second-order fuzzy linear boundary value problems. Miskolc Math. Notes 20 (2019), 2, 823-837.
DOI |
MR 4059278
[76] Citil, H. G.:
Important notes for a fuzzy boundary value problem. Appl. Math. Nonlinear Sci. 4 (2019), 2, 305-314.
DOI |
MR 3993415
[77] Dahalan, A. A., Muthuvalu, M. S., Sulaiman, J.:
Successive over relaxation method in solving two-point fuzzy boundary value problems. AIP Conf. Proc. 1522 (2013), 116-124.
DOI
[78] Dai, R., Chen, M.:
On the structural stability for two-point boundary value problems of undamped fuzzy differential equations. Fuzzy Sets Systems 400 (2020), 134-146.
DOI |
MR 4527411
[79] Dai, R., Chen, M.:
The structure stability of periodic solutions for first-order uncertain dynamical systems. Fuzzy Sets Systems 453 (2023), 95-114.
DOI |
MR 4160572
[80] Dai, R., Chen, M., Morita, H.:
Fuzzy differential equations for universal oscillators. Fuzzy Sets Systems 347 (2018), 89-104.
DOI |
MR 3812770
[81] Darabi, P., Moloudzadeh, S., Khandani, H.:
A numerical method for solving first-order fully fuzzy differential equation under strongly generalized H-differentiability. Soft Computing 20 (2016), 4085-4098.
DOI
[82] Diamond, P.:
Stability and periodicity in fuzzy differential equations. IEEE Trans. Fuzzy Syst. 8 (2000), 5, 583-590.
DOI
[83] Diamond, P.:
Brief note on the variation of constants formula for fuzzy differential equations. Fuzzy Sets Systems 129 (2002), 1, 65-71.
DOI |
MR 1907997
[84] Ding, Z., Ma, M., Kandel, A.:
Existence of the solutions of fuzzy differential equations with parameters. Inform. Sci. 99 (1997), 3-4, 205-217.
DOI |
MR 1448048
[85] Dizicheh, A. K., Salahshour, S., Ismail, F. B.:
A note on Numerical solutions of fuzzy differential equations by extended Runge-Kutta-like formulae of order 4. Fuzzy Sets Systems 233 (2013, 96-100.
DOI |
MR 3124242
[86] Donchev, T., Nosheen, A.:
Fuzzy functional differential equations under dissipative-type conditions. Ukrainian Math. J. 65 (2013), 6, 873-883.
DOI |
MR 3138178
[87] Dubois, D., Prade, H.:
Towards fuzzy differential calculus: Part 3, Differentiation. Fuzzy Sets Systems 8 (1982), 225-233.
DOI |
MR 0669414
[88] Effati, S., Pakdaman, M.:
Artificial neural network approach for solving fuzzy differential equations. Information Sciences 180(8) (2010) 1434-1457.
DOI |
MR 2587915
[89] ElJaoui, E., Melliani, S., Chadli, L. S.:
Solving second-order fuzzy differential equations by the fuzzy Laplace transform method. Advances Difference Equations 2015 (2015), 1-14.
DOI |
MR 3316765
[90] Epstein, I. R., Luo, Y.:
Differential delay equations in chemical kinetics. Nonlinear models: The cross-shaped phase diagram and the Oregonator. J. Chemical Physics 95 (1991), 1, 244-254.
DOI
[91] Epuganti, U. M. R., Tenali, G. B.:
Solutions of non-homogeneous linear set-valued differential equations. Nonlinear Analysis: Real World Applications 87 (2026), 104411.
DOI |
MR 4910529
[92] Esmi, E., Sanchez, D. E., Wasques, V. F., Barros, L. C.:
Solutions of higher order linear fuzzy differential equations with interactive fuzzy values. Fuzzy Sets Systems 419 (2021), 122-140.
DOI |
MR 4269566
[93] Farahi, M. H., Barati, S.:
Fuzzy time-delay dynamical systems. J. Math. Computer Sci. 2 (2011), 1, 44-53.
DOI
[94] Farajzadeh, A., Hosseinpour, A., Kumam, W.:
On boundary value problems in normed fuzzy spaces. Thai J. Math. 20 (2022), 1, 305-313.
DOI |
MR 4429132
[95] Fard, O. S., Esfahani, A., Kamyad, A. V.:
On solution of a class of fuzzy BVPs. Iranian J. Fuzzy Systems 9 (2012), 1, 49-60.
DOI |
MR 2954112
[96] Fard, O. S., Ghal-Eh, N.:
Numerical solutions for linear system of first-order fuzzy differential equations with fuzzy constant coefficients. Inform. Sci. 181 (2011), 4765-4779.
DOI |
MR 2823259
[97] Fatullayev, A. G., Köroglu, C.:
Numerical solving of a boundary value problem for fuzzy differential equations. CMES: Computer Model. Engrg. Sci. 86 (2012), 1, 39-52.
DOI |
MR 3026653
[98] Fatullayev, A. G., Can, E., Köroglu, C.:
Numerical solution of a boundary value problem for a second order fuzzy differential equation. TWMS J. Pure Appl. Math. 4 (2013), 2, 169-176.
MR 3157375
[99] Fatullayev, A. G., Gasilov, N. A., Amrahov, S. Emrah:
Numerical solution of linear inhomogeneous fuzzy delay differential equations. Fuzzy Optim. Decision Making 18 (2019), 315-326.
DOI |
MR 3990210
[100] Filev, D., Angelov, P.:
Fuzzy optimal control. Fuzzy Sets Systems 47 (1992), 2, 151-156.
DOI |
MR 1166266
[101] Fook, T. K., Ibrahim, Z. B.:
Block backward differentiation formulas for solving second order fuzzy differential equations. Matematika 33 (2017), 2, 215-226.
DOI |
MR 3798490
[102] Friedman, M., Ming, M., Kandel, A.:
On the validity of the Peano theorem for fuzzy differential equations. Fuzzy Sets Systems 86 (1997), 3, 331-334.
DOI |
MR 1454194
[103] Garg, H.:
A novel approach for solving fuzzy differential equations using Runge-Kutta and Biogeography-based optimization. J. Intell. Fuzzy Systems 30 (2016), 4, 2417-2429.
DOI
[104] Gasilov, N. A., Amrahov, Ş. E.:
Solving a nonhomogeneous linear system of interval differential equations. Soft Computing 22 (2018), 12, 3817-3828.
DOI
[105] Gasilov, N. A., Amrahov, Ş. E., Fatullayev, A. G., Karakas, H. I., Akin, O.:
A geometric approach to solve fuzzy linear systems. CMES: Computer Model. Engrg. Sci. 75 (2011), 3-4, 189-203.
DOI |
MR 2867758
[106] Gasilov, N. A., Amrahov, Ş. E., Fatullayev, A. G., Karakas, H. I., Akin, O.:
Application of geometric approach for fuzzy linear systems to a fuzzy input-output analysis. CMES: Computer Model. Engrg. Sci. 88 (2012), 2, 93-106.
DOI |
MR 3025105
[107] Gasilov, N. A., Amrahov, Ş. E., Fatullayev, A. G.:
A geometric approach to solve fuzzy linear systems of differential equations. Appl. Math. Inf. Sci. 5 (2011), 3, 484-495.
MR 2837659
[108] Gasilov, N., Amrahov, Ş. E., Fatullayev, A. G.:
Linear differential equations with fuzzy boundary values. In: Proc. 5th International Conference on Application of Information and Communication Technologies, IEEE 2011, pp. 696-700.
DOI
[109] Gasilov, N. A., Amrahov, Ş. E., Fatullayev, A. G.:
On solutions of initial-boundary value problem for fuzzy partial differential equations. In: Proc. 7th Int. Conf. on Application of Information and Communication Technologies (AICT2013), Baku 2013, pp. 410-412.
DOI
[110] Gasilov, N., Amrahov, Ş. E., Fatullayev, A. G.:
Solution of linear differential equations with fuzzy boundary values. Fuzzy Sets Systems 257 (2014), 169-183.
DOI |
MR 3267136
[111] Gasilov, N. A., Amrahov, Ş. E., Fatullayev, A. G., Hashimoglu, I. F.:
Solution method for a boundary value problem with fuzzy forcing function. Inform. Sci. 317 (2015), 349-368.
DOI |
MR 3350716
[112] Gasilov, N. A., Fatullayev, A. G., Amrahov, Ş. E.:
Solution of non-square fuzzy linear systems. J. Multiple-valued Logic Soft Computing 20 (2013), 3-4, 221-237.
MR 3059171
[113] Gasilov, N. A., Fatullayev, A. G., Amrahov, Ş. E.:
Solution method for a non-homogeneous fuzzy linear system of differential equations. Appl. Soft Comput. 70 (2018), 225-237.
DOI
[114] Gasilov, N. A., Fatullayev, A. G., Amrahov, Ş. E., Khastan, A.:
A new approach to fuzzy initial value problem. Soft Comput. 18 (2014), 217-225.
DOI
[115] Gasilov, N. A., Amrahov, Ş. E., Fatullayev, A. G.:
On a solution of the fuzzy Dirichlet problem for the heat equation. Int. J. Thermal Sci. 103 (2016), 67-76.
DOI
[116] Gasilov, N. A., Amrahov, Ş. E.:
On differential equations with interval coefficients. Math. Methods Appl. Sci. 43 (2020), 4, 1825-1837.
DOI |
MR 4067025
[117] Gasilov, N. A., Hashimoglu, I. F., Amrahov, Ş. E., Fatullayev, A. G.:
A new approach to non-homogeneous fuzzy initial value problem. CMES: Computer Model. Engrg. Sci. 85 (2012), 4, 367-378.
DOI |
MR 3013661
[118] Gasilov, N. A., Kaya, M.:
A method for the numerical solution of a boundary value problem for a linear differential equation with interval parameters. Int. J. Comput. Methods 16 (2019), 7, Article 1850115.
DOI |
MR 3985227
[119] Georgiou, D. N., Nieto, J. J., Rodríguez-López, R.:
Initial value problems for higher-order fuzzy differential equations. Nonlinear Analysis: Theory, Methods Appl. 63 (2005), 4, 587-600.
DOI |
MR 2175817
[120] Ghazanfari, B., Niazi, S., Ghazanfari, A. G.:
Linear matrix differential dynamical systems with fuzzy matrices. Appl. Math. Modell. 36 (2012), 348-356.
DOI |
MR 2835016
[121] Ghazanfari, B., Shakerami, A.:
Numerical solutions of fuzzy differential equations by extended Runge-Kutta-like formulae of order 4. Fuzzy Sets Systems 189, 1, 74-91.
DOI |
MR 2871354
[122] Gholami, N., Allahviranloo, T., Abbasbandy, S., Karamikabir, N.:
Fuzzy reproducing kernel space method for solving fuzzy boundary value problems. Math. Sci. 13 (2019), 97-103.
DOI |
MR 3976707
[123] Gomes, L. T., Barros, L. C.:
Fuzzy calculus via extension of the derivative and integral operators and fuzzy differential equations. In: Proc. of 2012 Annual Meeting of the NAFIPS (North American Fuzzy Information Processing Society), IEEE 2012, pp. 1-5.
DOI |
MR 3379940
[124] Gopal, D., Martinez-Moreno, J., Özgür, N.:
On fixed figure problems in fuzzy metric spaces. Kybernetika 59 (2023), 1, 110-129.
DOI |
MR 4567844
[125] Gopal, D., Martinez-Moreno, J., Rodriguez-López, J. R.:
Asymptotic fuzzy contractive mappings in fuzzy metric spaces. Kybernetika 60 (2024, 3, 394-411.
DOI |
MR 4777315
[126] Guo, M., Peng, X., Xu, Y.:
Oscillation property for fuzzy delay differential equations. Fuzzy Sets Systems 200 (2012), 25-35.
DOI |
MR 2927842
[127] Hakim, M., Zitouni, R.:
An approach to solve a fuzzy bi-objective multi-index fixed charge transportation problem. Kybernetika 60 (2024), 3, 271-292.
DOI |
MR 4777310
[128] Hale, J. K.:
Functional Differential Equations. Springer, New York 1971.
DOI |
MR 0466837
[129] Hashemi, M. S., Malekinagad, J., Marasi, H. R.:
Series solution of the system of fuzzy differential equations. Adv. Fuzzy Systems (2012) Article ID 407647, 16 pages.
DOI |
MR 2968404
[130] Harir, A., Harfi, H. El, Melliani, S., Chadli, L. C.:
Fuzzy solutions of the SIR models using VIM. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 30 (2022), 01, 43-61.
DOI |
MR 4381273
[131] Hoa, N. V., Allahviranloo, T., Vu, H.:
On the stability for the fuzzy initial value problem. J. Intell. Fuzzy Systems 39 (2020), 5, 7747-7755.
DOI
[132] Hoa, N. V., Tri, P. V., Dao, T. T., Zelinka, I.:
Some global existence results and stability theorem for fuzzy functional differential equations. J. Intell. Fuzzy Systems 28 (2015), 1, 393-409.
DOI |
MR 3301444
[133] Hosseini, M. M., Saberirad, F., Davvaz, B.:
Numerical solution of fuzzy differential equations by variational iteration method. Int. J. Fuzzy Systems 18 (2016), 875-882.
DOI |
MR 3551928
[134] Hukuhara, M.:
Intégration des applications mesurables dont la valeur est un compact convexe. Funkcialaj Ekvacioj 10 (1967), 205-223.
MR 0226503
[135] Hüllermeier, E.:
An approach to modeling and simulation of uncertain dynamical systems. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 5 (1997), 2, 117-137.
DOI |
MR 1444079
[136] Hüllermeier, E.:
Numerical methods for fuzzy initial value problems. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 7 (1999), 5, 439-461.
DOI |
MR 1736204
[137] Isa, S., Majid, Z. Abdul, Ismail, F., Rabiei, F.:
Diagonally implicit multistep block method of order four for solving fuzzy differential equations using Seikkala derivatives. Symmetry 10 (2018), 2, 42.
DOI
[138] Isaks, R.:
Properties of quantum logic maps as fuzzy relations on a set of all symmetric and idempotent binary matrices. Kybernetika 60 (2024), 5, 682-689.
DOI |
MR 4848306
[139] Jafari, R., Razvarz, S.:
Solution of fuzzy differential equations using fuzzy Sumudu transforms. Math. Comput. Appl. 23 (2018), 1, 5.
DOI |
MR 3789716
[140] Jafari, H., Saeidy, M., Baleanu, D.:
The variational iteration method for solving n-th order fuzzy differential equations. Central European J. Physics 10 (2012), 76-85.
DOI
[141] Jafari, R., Yu, W., Li, X., Razvarz, S.:
Numerical solution of fuzzy differential equations with Z-numbers using Bernstein neural networks. Int. J. Comput. Intell. Systems 10 (2017), 1, 1226-1237.
DOI |
MR 3789716
[142] Jafelice, R. M., Almeida, C. G., Meyer, J. F., Vasconcelos, H. L.:
Fuzzy parameter in a partial differential equation model for population dispersal of leaf-cutting ants. Nonlinear Analysis: Real World Appl. 12 (2011), 3397-3412.
DOI |
MR 2832980
[143] Jafelice, R. M., Barros, L. C., Bassanezi, R. C., Gomide, F.:
Fuzzy modeling in symptomatic HIV virus infected population. Bull. Math. Biology 66 (2004), 6, 1597-1620.
DOI |
MR 2253264
[144] Jafelice, R. M., Barros, L. C., Bassanezi, R. C.: A fuzzy delay differential equation model for HIV dynamics. In: Proc. IFSA/EUSFLAT Conference 2009, pp. 265-270.
[145] Jamal, N., Sarwar, M., Hussain, S., Mukheimer, A.:
Existence criteria for the unique solution of first order linear fuzzy differential equations on the space of linearly correlated fuzzy numbers. Fractals 30 (2022), 8, 2240221.
DOI |
MR 4363606
[146] Jamal, N., Sarwar, M., Khashan, M. M.:
Hyers-Ulam stability and existence criteria for the solution of second order fuzzy differential equations. J. Function Spaces 2021 (2021), 1, 6664619.
DOI |
MR 4268061
[147] Jamal, N., Sarwar, M., Mlaiki, N., Aloqaily, A.:
Solution of linear correlated fuzzy differential equations in the linear correlated fuzzy spaces. AIMS Mathematics 9 (2024), 2, 2695-2721.
DOI |
MR 4685429
[148] Jameel, A. F., Anakira, N. R., Rashidi, M. M., Alomari, A. K., Saaban, A., Shakhatreh, M. A.:
Differential transformation method for solving high order fuzzy initial value problems. Italian J. Pure Appl. Math. 39 (2018) 194-208.
DOI
[149] Jameel, A., Anakira, N. R., Alomari, A. K., Hashim, I., Shakhatreh, M. A.:
Numerical solution of $n$th order fuzzy initial value problems by six stages. J. Nonlinear Sci. Appl. 9 (2016), 2, 627-640.
DOI |
MR 3416277
[150] Jameel, A. F., Saaban, A., Zureigat, H. H.:
Numerical solution of second-order fuzzy nonlinear two-point boundary value problems using combination of finite difference and Newton's methods. Neural Computing Appl. 30 (2018), 3167-3175.
DOI
[151] Jamshidi, L., Avazpour, L.:
Solution of the fuzzy boundary value differential equations under generalized differentiability by shooting method. J. Fuzzy Set Valued Analysis (2012), Article ID jfsva-00136, 19 pages.
DOI |
MR 3037946
[152] Jiang, C., Zhou, D. H.:
Fault detection and identification for uncertain linear time-delay systems. Computers Chemical Engrg. 30, (2005), 2, 228-242.
DOI
[153] Jin, Z., Wu, J.:
On the Ulam stability of fuzzy differential equations. AIMS Mathematics 5 (2020), 6, 6006-6019.
DOI |
MR 4148928
[155] Kaleva, O.:
The Cauchy problem for fuzzy differential equations. Fuzzy Sets Systems 35 (1990), 389-396.
DOI |
MR 1055256
[156] Kaleva, O.:
The Peano theorem for fuzzy differential equations revisited. Fuzzy Sets Systems 98 (1998), 1, 147-148.
DOI |
MR 1640147
[157] Kaleva, O.:
A note on fuzzy differential equations. Nonlinear Anal. 64 (2006) 895-900.
DOI |
MR 2196799
[158] Kanagarajan, K., Suresh, R.:
Runge-Kutta method for solving fuzzy differential equations under generalized differentiability. Comput. Appl. Math. 37 (2018), 1294-1305.
DOI |
MR 3804128
[159] Kandel, A., Byatt, W. J.:
Fuzzy differential equations. In: Proc. Int. Conf. on Cybernetics and Society, Tokyo 1978, pp. 213-1216.
MR 0707701
[160] Karami, A., Rezaei, E., Shahhosseni, M., Aghakhani, M.:
Fuzzy logic to predict the heat transfer in an air cooler equipped with different tube inserts. Int. J. Thermal Sci. 53 (2012), 141-147.
DOI
[161] Karpagappriya, S., Alessa, N., Jayaraman, P., Loganathan, K.:
A novel approach for solving fuzzy differential equations using cubic spline method. Math. Problems Engrg. 2021 (2021), 1, 5553732.
DOI |
MR 4265307
[162] Kartli, N., Bostanci, E., Guzel, M. S.:
Heuristic algorithm for an optimal solution of fully fuzzy transportation problem. Computing 106 (2024), 10, 3195-3227.
DOI |
MR 4794582
[163] Khastan, A., Bahrami, F., Ivaz, K.:
New results on multiple solutions for $n$th-order fuzzy differential equations under generalized differentiability. Boundary Value Problems (2009), Article ID 395714.
DOI |
MR 2530281
[164] Khastan, A., Ivaz, K.:
Numerical solution of fuzzy differential equations by Nyström method. Chaos Solitons Fractals 41 (2009), 2, 859-868.
DOI |
MR 2535621
[165] Khastan, A., Nieto, J. J.:
A boundary value problem for second-order fuzzy differential equations. Nonlinear Anal. 72 (2010), 3583-3593.
DOI |
MR 2606803
[166] Khastan, A., Nieto, J. J., Rodríguez-López, R.:
Fuzzy delay differential equations under generalized differentiability. Inform. Sci. 275 (2014), 145-167.
DOI |
MR 3205624
[167] Khastan, A., Nieto, J. J., Rodríguez-López, R.:
Variation of constant formula for first order fuzzy differential equations. Fuzzy Sets Systems 177 (2011), 20-33.
DOI |
MR 2812829
[168] Khastan, A., Nieto, J. J., Rodríguez-López, R.:
Periodic boundary value problems for first-order linear differential equations with uncertainty under generalized differentiability. Inform. Sci. 222 (2013), 544-558.
DOI |
MR 2998530
[169] Khastan, A., Nieto, J. J., Rodríguez-López, R.:
Fuzzy delay differential equations under generalized differentiability. Inform. Sci. 275 (2014), 145-167.
DOI |
MR 3205624
[170] Khastan, A., Perfilieva, I., Alijani, Z.:
A new fuzzy approximation method to Cauchy problems by fuzzy transform. Fuzzy Sets Systems 288 (2016), 75-95.
DOI |
MR 3452803
[171] Khastan, A., Rodríguez-López, R.:
On the solutions to first order linear fuzzy differential equations. Fuzzy Sets Systems 295 (2016), 114-135.
DOI |
MR 3488880
[172] Khastan, A., Rodríguez-López, R.:
On periodic solutions to first order linear fuzzy differential equations under differential inclusions approach. Inform. Sci. 322 (2015, 31-50.
DOI |
MR 3389888
[173] Khastan, A., Rodríguez-López, R.:
On linear fuzzy differential equations by differential inclusions' approach. Fuzzy Sets Systems 387 (2020), 49-67.
DOI |
MR 4080004
[174] Khodadadi, E., Karabacak, M., Çelik, E.:
Numerical solutions of fuzzy linear fractional differential equations with Laplace transforms under Caputo-type H-differentiability. J. Math. 2025 (2025), 1, 9998269.
DOI |
MR 4896493
[175] Kichmarenko, O. D., Skripnik, N. V.:
Averaging of fuzzy differential equations with delay. Nonlinear Oscillations 11 (2008), 3, 331-344.
DOI |
MR 2512747
[176] Kloeden, P. E.:
Remarks on Peano-like theorems for fuzzy differential equations. Fuzzy Sets Systems 44 (1991), 1, 161-163.
DOI |
MR 1133991
[177] Kloeden, P. E., Lorenz, T.:
Fuzzy differential equations without fuzzy convexity. Fuzzy Sets Systems 230 (2013) 65-81.
DOI |
MR 3104328
[178] Komleva, T. A., Plotnikov, A. V., Skripnik, N. V.:
Differential equations with set-valued solutions. Ukrainian Math. J. 60 (2008), 10, 1540-1556.
DOI |
MR 2518586
[179] Kramosil, I., Michálek, J.:
Fuzzy metrics and statistical metric spaces. Kybernetika 11 (1975), 5, 336-344.
MR 0410633 |
Zbl 0319.54002
[180] Kuang, Y.:
Delay Differential Equations with Applications in Population Dynamics. Academic Press, Boston 1993.
MR 1218880 |
Zbl 0777.34002
[181] Laksmikantham, V.:
Set differential equations versus fuzzy differential equations. Appl. Math. Comput. 164 (2005), 2, 277-294.
DOI |
MR 2131157
[182] Lakshmikantham, V., Leela, S.:
Stability theory of fuzzy differential equations via differential inequalities. Math. Inequalit. Appl. 2 (1999), 551-559.
DOI |
MR 1717048
[183] Lakshmikantham, V., Murty, K. N., Turner, J.:
Two-point boundary value problems associated with non-linear fuzzy differential equations. Math. Inequalit. Appl. 4 (2001), 527-533.
MR 1859659
[184] Lakshmikantham, V., Nieto, J. J.:
Differential equations in metric spaces: an introduction and an application to fuzzy differential equations. Dynamics Continuous Discrete Impulsive Systems: Series A 10 (2003), 6, 991-1000.
MR 2008760
[185] Li, D., Chen, M., Xue, X.:
Two-point boundary value problems of uncertain dynamical systems. Fuzzy Sets Systems 179 (2011), 50-61.
DOI |
MR 2818197
[186] Li, J., Zhao, A., Yan, J.:
The Cauchy problem of fuzzy differential equations under generalized differentiability. Fuzzy Sets Systems 200 (2012), 1-24.
DOI |
MR 2927841
[187] Liu, B.: Fuzzy process, hybrid process and uncertain process. J. Uncertain Systems 2 (2008), 1, 3-16.
[188] Liu, H.-K.:
Comparison results of two-point fuzzy boundary value problems. Int. J. Comput. Math. Sci. 5 (2011), 1-7.
MR 2659268
[189] Liu, R., Feckan, M., Wang, J., O'Regan, D.:
Ulam type stability for first-order linear and nonlinear impulsive fuzzy differential equations. Int. J. Computer Math. 99 (2022), 6, 1281-1303.
DOI |
MR 4412125
[190] Liu, R., Wang, J., O'Regan, D.:
Ulam type stability of first-order linear impulsive fuzzy differential equations. Fuzzy Sets Systems 400 (2020), 34-89.
DOI |
MR 4160570
[191] Liu, X. M., Jiang, J., Hong, L.:
A numerical method to solve a fuzzy differential equation via differential inclusions. Fuzzy Sets Systems 404 (2021), 38-61.
DOI |
MR 4174517
[192] Long, H. V., Nieto, J. J., Son, N. T. K.:
New approach for studying nonlocal problems related to differential systems and partial differential equations in generalized fuzzy metric spaces. Fuzzy Sets Systems 331 (2018), 26-46.
DOI |
MR 3733266
[193] Lupulescu, V.:
Initial value problem for fuzzy differential equations under dissipative conditions. Inform. Sci. 178 (2008), 23, 4523-4533.
DOI |
MR 2467124
[194] Lupulescu, V.:
On a class of fuzzy functional differential equations. Fuzzy Sets Systems 160 (2009), 11, 1547-1562.
DOI |
MR 2510141
[195] Lupulescu, V., Abbas, U.:
Fuzzy delay differential equations. Fuzzy Optim. Decision Making 11 (2012), 1, 99-111.
DOI |
MR 2881511
[196] Ma, M., Friedman, M., Kandel, A.:
Numerical solutions of fuzzy differential equations. Fuzzy Sets Systems 105 (1999), 1, 133-138.
DOI |
MR 1688006
[197] Macias-Diaz, J. E., Tomasiello, S.:
A differential quadrature-based approach a la Picard for systems of partial differential equations associated with fuzzy differential equations. J. Comput. Appl. Math. 299 (2016), 15-23.
DOI |
MR 3452844
[198] Mahata, A., Mondal, S. P., Ahmadian, A., Ismail, F., Alam, S., Salahshour, S.:
Different solution strategies for solving epidemic model in imprecise environment. Complexity 2018 (2018), 1, 4902142.
DOI |
MR 3872483
[199] Malinowski, M. T.:
On random fuzzy differential equations. Fuzzy Sets Systems 160 (2009), 21, 3152-3165.
DOI |
MR 2567099
[200] Malinowski, M. T.:
Existence theorems for solutions to random fuzzy differential equations. Nonlinear Analysis: Theory Methods Appl. 73 (2010), 6, 1515-1532.
DOI |
MR 2661337
[201] Malinowski, M. T.:
Random fuzzy differential equations under generalized Lipschitz condition. Nonlinear Analysis: Real World Appl. 13 (2012), 2, 860-881.
DOI |
MR 2846886
[202] Malinowski, M. T.:
On set differential equations in Banach spaces - A second type Hukuhara differentiability approach. Appl. Math. Comput. 219 (2012), 1, 289-305.
DOI |
MR 2949593
[203] Malinowski, M. T.:
Ito type stochastic fuzzy differential equations with delay. Systems Control Lett. 61 (2012), 6, 692-701.
DOI |
MR 2924213
[204] Malinowski, M. T.:
Some properties of strong solutions to stochastic fuzzy differential equations. Inform. Sci. 252 (2013), 62-80.
DOI |
MR 3123920
[205] Malinowski, M. T.:
Stochastic fuzzy differential equations of a non-increasing type. Commun. Nonlinear Sci. Numer. Simul. 33 (2016), 99-117.
DOI |
MR 3417172
[206] Malinowski, M. T., Michta, M.:
Stochastic fuzzy differential equations with an application. Kybernetika 47 (2011), 1, 123-143.
DOI |
MR 2807869
[207] Martynyuk, A. A., Stamova, I. M., Chernienko, V. A.:
Stability analysis of uncertain impulsive systems via fuzzy differential equations. Int. J. Systems Sci. 51 (2020), 4, 643-654.
DOI |
MR 4080957
[208] Mazandarani, M., Najariyan, M.:
A note on class of linear differential dynamical systems with fuzzy initial condition. Fuzzy Sets Systems 265 (2015), 121-126.
DOI |
MR 3310331
[209] Mazandarani, M., Pariz, N., Kamyad, A. V.:
Granular differentiability of fuzzy-number-valued functions. IEEE Trans. Fuzzy Systems 26 (2018), 1, 310-323.
DOI
[210] Mikaeilvand, N., Khakrangin, S.:
Solving fuzzy partial differential equations by fuzzy two-dimensional differential transform method. Neural Comput. Appl. 21 (2012), 1, S307-S312.
DOI
[211] Min, C., Huang, N. J., Zhang, L. H.:
Existence of local and global solutions of fuzzy delay differential inclusions. Adv. Differ. Equations 2014 (2014), Article number: 108.
DOI |
MR 3248622
[212] Mirzaee, F., Yari, M. K.:
A novel computing three-dimensional differential transform method for solving fuzzy partial differential equations. Ain Shams Engrg. J. 7 (2016), 2, 695-708.
DOI
[213] Mizukoshi, M. T., Barros, L. C., Chalco-Cano, Y., Román-Flores, H., Bassanezi, R. C.:
Fuzzy differential equations and the extension principle. Inform. Sci. 177 (2007), 3627-3635.
DOI |
MR 2530842
[214] Mizukoshi, M. T., Barros, L. C., Bassanezi, R. C.:
Stability of fuzzy dynamic systems. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 17 (2009), 01, 69-83.
DOI |
MR 2514521
[215] Mohapatra, D., Chakraverty, S.:
Type-2 fuzzy initial value problems under granular differentiability. Math. Computers Simul. 229 (2025), 435-447.
MR 4812364
[216] Moghadam, M. M., Jalal, I.:
Finite volume methods for fuzzy parabolic equations. J. Math. Computer Sci. 2 (2011), 3, 546-558.
DOI
[217] Molchanyuk, I. V., Plotnikov, A. V.:
Necessary and sufficient conditions of optimality in the problems of control with fuzzy parameters. Ukrainian Math. J. 61 (2009), 3, 457-466.
DOI |
MR 2562219
[218] Mondal, S. P., Khan, N. A., Razzaq, O. A., Tudu, S., Roy, T. K.:
Adaptive strategies for system of fuzzy differential equation: Application of arms race model. J. Math. Computer Sci. 18 (2018), 192-205.
DOI
[219] Mondal, S. P., Roy, T. K.:
Solution of second order linear fuzzy ordinary differential equation by Lagrange multiplier method with application in mechanics. Opsearch 54 (2017), 766-798.
DOI |
MR 3715947
[220] Mosleh, M.:
Fuzzy neural network for solving a system of fuzzy differential equations. Appl. Soft Comput. 13 (2013), 8, 3597-3607.
DOI
[221] Mosleh, M., Otadi, M.:
Simulation and evaluation of fuzzy differential equations by fuzzy neural network. Appl. Soft Comput. 12 (2012), 9, 2817-2827.
DOI |
MR 2806708
[222] Mosleh, M., Otadi, M.:
Minimal solution of fuzzy linear system of differential equations. Neural Comput. Appl. 21 (2012), Suppl. 1, S329-S336.
DOI |
MR 3037928
[223] Mosleh, M., Otadi, M.:
Approximate solution of fuzzy differential equations under generalized differentiability. Appl. Math. Modell. 39 (2015), 10-11, 3003-3015.
DOI |
MR 3339132
[224] Murty, M. S. N., Kumar, G. S.:
Three point boundary value problems for third order fuzzy differential equations. J. Chungcheong Math. Soc. 19 (2006), 1, 101-110.
DOI
[225] Nagi, F., Ahmed, S. K., Zularnain, A. T., Nagi, J.:
Fuzzy time-optimal controller (FTOC) for second order nonlinear systems. ISA Trans. 50 (2011), 364-375.
DOI
[226] Nasibov, E., Atilgan, C., Berberler, M. E., Nasiboglu, R.:
Fuzzy joint points based clustering algorithms for large data sets. Fuzzy Sets Systems 270 (2015), 111-126.
DOI |
MR 3328011
[227] Nasiboglu, R., Nasibov, E.:
FyzzyGBR - A gradient boosting regression software with fuzzy target values. Software Impacts 14 (2022), 100430.
DOI
[228] Nieto, J. J.:
The Cauchy problem for continuous fuzzy differential equations. Fuzzy Sets Systems 102 (1997), 2, 259-262.
DOI |
MR 1674955
[229] Nieto, J. J., Khastan, A., Ivaz, K.:
Numerical solution of fuzzy differential equations under generalized differentiability. Nonlinear Analysis: Hybrid Systems 3 (2009), 4, 700-707.
DOI |
MR 2561685
[230] Nieto, J. J., Rodríguez-López, R.:
Bounded solutions for fuzzy differential and integral equations. Chaos Solitons Fractals 27 (2006), 5, 1376-1386.
DOI |
MR 2164862
[231] Nieto, J. J., Rodríguez-López, R.:
Some results on boundary value problems for fuzzy differential equations with functional dependence. Fuzzy Sets Systems 230 (2013), 92-118.
DOI |
MR 3104330
[232] Nieto, J. J., Rodríguez-López, R., Franko, D.:
Linear first-order fuzzy differential equations. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 14 (2006), 06, 687-709.
DOI |
MR 2289145
[233] Nieto, J. J., Rodríguez-López, R., Villanueva-Pesqueira, M.:
Exact solution to the periodic boundary value problem for a first-order linear fuzzy differential equation with impulses. Fuzzy Optim. Decision Making 10 (2011), 323-339.
DOI |
MR 2847357
[234] Oberguggenberger, M., Pittschmann, S.:
Differential equations with fuzzy parameters. Math. Computer Modell. Dynamical Systems: Methods Tools Appl. Engrg. Related Sci. 5 (1999), 3, 181-202.
DOI
[235] Omar, A. A., Hasan, Y. A.:
Numerical solution of fuzzy differential equations and the dependency problem. Appl. Math. Comput. 219 (2012), 3, 1263-1272.
DOI |
MR 2981319
[236] O'Regan, D., Lakshmikantham, V., Nieto, J. J.:
Initial and boundary value problems for fuzzy differential equations. Nonlinear Anal. 54 (2003), 405-415.
DOI |
MR 1978418
[237] Palligkinis, S. C., Papageorgiou, G., Famelis, I. T.:
Runge-Kutta methods for fuzzy differential equations. Appl. Math. Comput. 209, 1, 97-105.
DOI |
MR 2493289
[238] Park, J. Y., Han, H. K.:
Fuzzy differential equations. Fuzzy Sets Systems 110 (2000), 1, 69-77.
DOI |
MR 1748109
[239] Park, J. Y., Jeong, J. U.:
On random fuzzy functional differential equations. Fuzzy Sets Systems 223 (2013), 89-99.
DOI |
MR 3054143
[240] Pearson, D. W.:
A property of linear fuzzy differential equations. Appl. Math. Lett. 10 (1997), 3, 99-103.
DOI |
MR 1457648
[241] Pedro, F. S., Barros, L. C., Esmi, E.:
Population growth model via interactive fuzzy differential equation. Inform. Sci. 481 (2019), 160-173.
DOI |
MR 3895024
[242] Pedrycz, W.:
Why triangular membership functions?. Fuzzy Sets Systems 64 (1994), 1, 21-30.
DOI |
MR 1281283
[243] Perfilieva, I., Meyer, H., Baets, B., Plšková, D.:
Cauchy problem with fuzzy initial condition and its approximate solution with the help of fuzzy transform. In: IEEE World Congress on Computational Intelligence (WCCI 2008), 6 p., 2008.
DOI |
MR 2218243
[244] Perfilieva, I., Kreinovich, V.:
Fuzzy transforms of higher order approximate derivatives: A theorem. Fuzzy Sets Systems 180 (2011), 1, 55-68.
DOI |
MR 2822356
[245] Plotnikov, A. V.:
Necessary optimality conditions for a nonlinear problem of control of trajectory bundles. Cybernetics Systems Analysis 36 (2000), 5, 730-733.
DOI |
MR 1839626
[246] Plotnikov, A. V., Komleva, T. A., Skripnik, N. V.:
Existence of basic solutions of first order linear homogeneous set-valued differential equations. Matematychni Studii 61 (2024), 1, 61-78.
DOI |
MR 4729949
[247] Plotnikov, A. V., Skripnik, N. V.:
An existence and uniqueness theorem to the Cauchy problem for generalised set differential equations. Dynamics Continuous Discrete Impulsive Systems, Series A: Math. Anal. 20 (2013), 433-445.
DOI |
MR 3136526
[248] Prakash, P., Priya, G. Sudha, Kim, J.-H.:
Third-order three-point fuzzy boundary value problems. Nonlinear Analysis: Hybrid Systems 3 (2009), 3, 323-333.
DOI |
MR 2535921
[249] Puri, M. L., Ralescu, D. A.:
Differentials of fuzzy functions. J. Math. Anal. Appl. 91 (1983), 552-558.
DOI |
MR 0690888
[250] Qayyum, M., Tahir, A., Saeed, S. T., Afzal, S., Akgül, A., Hassani, M. K.:
Dual solution of thin film flow of fuzzified MHD pseudo-plastic fluid: numerical investigation in uncertain environment. Appl. Math. Sci. Engrg. 32 (2024), 1, 2421486.
DOI |
MR 4817744
[251] Qiu, D., Dong, R., Lu, C., Mu, C.:
On the stability of solutions of fuzzy differential equations in the quotient space of fuzzy numbers. J. Intell. Fuzzy Systems 31 (2016), 1, 45-54.
DOI |
MR 3347782
[252] Qiu, D., Zhang, W., Lu, C.:
On fuzzy differential equations in the quotient space of fuzzy numbers. Fuzzy Sets Systems 295 (2016), 72-98.
DOI |
MR 3488878
[253] Qiu, D., Zhang, C., Zhang, W., Mu, C.:
Basic theorems for fuzzy differential equations in the quotient space of fuzzy numbers. Advances Difference Equations (2014) 1-22.
DOI |
MR 3347782
[254] Rabiei, F., Ismail, F., Ahmadian, A., Salahshour, S.:
Numerical solution of second‐order fuzzy differential equation using improved Runge-Kutta Nystrom method. Math. Problems Engrg. 2013 (2013), 1, 803462.
DOI |
MR 3062692
[255] Rabiei, F., Hamid, F. Abd, Rashidi, M. M., Ismail, F.:
Numerical simulation of fuzzy differential equations using general linear method and B-series. Advances Mechanic. Engrg. 9 (2017), 9, 1687814017715419.
DOI
[256] Rahman, N. A. A., Ahmad, M. Z.:
Applications of the fuzzy Sumudu transform for the solution of first order fuzzy differential equations. Entropy 17 (2015), 7, 4582-4601.
DOI
[257] Ren, W., Yang, Z., Sun, X., Qi, M.:
Hyers-Ulam stability of Hermite fuzzy differential equations and fuzzy Mellin transform. J. Intell. Fuzzy Systems 35 (2018), 3, 3721-3731.
DOI
[258] Rodríguez-López, R.:
On the existence of solutions to periodic boundary value problems for fuzzy linear differential equations. Fuzzy Sets Systems 219 (2013), 1-6.
DOI |
MR 3035731
[259] Rodríguez-López, R.:
Comparison results for fuzzy differential equations. Inform. Sci. 178 (2008), 1756-1779.
DOI |
MR 2406997
[260] Rodríguez-López, R.:
Monotone method for fuzzy differential equations. Fuzzy Sets Systems 159 (2008), 16, 2047-2076.
DOI |
MR 2431800
[261] Roussel, M. R.:
The use of delay differential equations in chemical kinetics. J. Physical Chemistry 100 (1996), 20, 8323-8330.
DOI
[262] Salahshour, S., Haghi, E.:
Solving fuzzy heat equation by fuzzy Laplace transforms. Commun. Computer Inform. Sci. 81 (2010), 512-521.
DOI
[263] Salamat, N., Mustahsan, M., Missen, M. M. Saad:
Switching point solution of second-order fuzzy differential equations using differential transformation method. Mathematics 7 (2019), 3, 231.
DOI
[264] Salgado, S. A. B., Esmi, E., Sanchez, D. E., Barros, L. C. de:
Solving interactive fuzzy initial value problem via fuzzy Laplace transform. Computat. Appl. Math. 40 (2021), 1-14.
DOI |
MR 4204574
[265] Salgado, S. A. B., Barros, L. C. de, Esmi, E., Sanchez, D. Eduardo:
Solution of a fuzzy differential equation with interactivity via Laplace transform. J. Intell. Fuzzy Systems 37 (2019), 2, 2495-2501.
DOI
[266] Sanchez, D. E., Barros, L. C., Esmi, E.:
On interactive fuzzy boundary value problems. Fuzzy Sets Systems 358 (2019), 84-96.
DOI |
MR 3913069
[267] Sanchez, D. E., Wasques, V. F., Esmi, E., Barros, L. C. de:
Solution to the Bessel differential equation with interactive fuzzy boundary conditions. Comput. Appl. Math. 41 (2022), 1-12.
DOI |
MR 4347606
[268] Pedro, F. Santo, Barros, L. C. de, Esmi, E.:
Population growth model via interactive fuzzy differential equation. Inform. Sci. 481 (2019), 160-173.
DOI |
MR 3895024
[269] Sarvestani, M. S., Chehlabi, M.:
Solutions of periodic boundary value problems for first-order linear fuzzy differential equations under new conditions. Comput. Appl. Math. 43 (2024), 5, 299.
DOI |
MR 4761912
[270] Saqib, M., Akram, M., Bashir, S., Allahviranloo, T.:
A Runge-Kutta numerical method to approximate the solution of bipolar fuzzy initial value problems. Comput. Appl. Math. 40 (2021), 4, 151.
DOI |
MR 4263165
[271] Seikkala, S.:
On the fuzzy initial value problem. Fuzzy Sets Systems 24 (1987), 3, 319-330.
DOI |
MR 0919059
[272] Shang, D., Guo, X.:
Adams predictor-corrector systems for solving fuzzy differential equations. Math. Problems Engrg. 2013 (2013), 1, 312328.
DOI |
MR 3070722
[273] Shaw, A. K., Rahaman, M., Mondal, S. P., Chatterjee, B., Alam, S.:
Solution of a mining equipment maintenance system model in imprecise environment. Int. J. Oper. Res. 51 (2024), 4, 562-598.
DOI |
MR 4842080
[274] Shen, Y.:
First-order linear fuzzy differential equations on the space of linearly correlated fuzzy numbers. Fuzzy Sets Systems 429 (2022), 136-168.
DOI |
MR 4363606
[275] Shen, Y.:
Solutions to the fuzzy heat equation and the fuzzy wave equation in the space of strongly linearly correlated fuzzy numbers. Inform. Sci. 718 (2025), 122423.
DOI
[276] Shen, Y., Chen, W., Wang, J.:
Fuzzy Laplace transform method for the Ulam stability of linear fuzzy differential equations of first order with constant coefficients. J. Intell. Fuzzy Systems 32(1) (2017) 671-680.
DOI |
MR 3590367
[277] Shen, Y., Wang, F.:
A fixed point approach to the Ulam stability of fuzzy differential equations under generalized differentiability. J. Intell. Fuzzy Systems 30 (2016), 6, 3253-3260.
DOI |
MR 3176115
[278] Shen, Y., Yan, C.:
A new approach for fuzzy gyronorms on gyrogroups and its fuzzy topologies. Kybernetika 60 (2024), 1, 19-37.
DOI |
MR 4730698
[279] Shi, Y., Yao, W.:
On generalizations of fuzzy metric spaces. Kybernetika 59 (2023), 6, 880-903.
DOI |
MR 4712967
[280] Soma, N., Kumar, G. S., Agarwal, R. P., Wang, C., Murty, M. S. N.:
Existence and uniqueness of solutions for fuzzy boundary value problems under granular differentiability. Fuzzy Inform. Engrg. 15 (2023), 3, 291-312.
DOI
[281] Song, S., Wu, C.:
Existence and uniqueness of solutions to Cauchy problem of fuzzy differential equations. Fuzzy Sets Systems 110 (2000), 1, 55-67.
DOI |
MR 1748108
[282] Song, S., Wu, C., Xue, X.:
Existence and uniqueness of Cauchy problem for fuzzy differential equations under dissipative conditions. Computers Math. Appl. 51 (2006), 9-10, 1483-1492.
DOI |
MR 2237645
[283] Stefanini, L.:
A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets Systems 161 (2010), 11, 1564-1584.
DOI |
MR 2608262 |
Zbl 1188.26019
[284] Štěpnička, M., Valášek, R.:
Numerical solution of partial differential equations with help of fuzzy transform. In: Proc. 14th IEEE International Conference on Fuzzy Systems (FUZZ'05), 2005, pp. 1104-1109.
DOI
[285] Sun, X., Yang, Z.:
A Mellin transform method for solving fuzzy differential equations. Adv. Differ. Equations 2016 (2016), Article number: 296.
DOI |
MR 3575779
[286] Tapaswini, S., Chakraverty, S.:
A new approach to fuzzy initial value problem by improved Euler method. Fuzzy Inform. Engrg. 4 (2012), 3, 293-312.
DOI |
MR 2981190
[287] Tapaswini, S., Chakraverty, S.:
Numerical solution of fuzzy differential equations using orthogonal polynomials. Int. J. Comput. Sci. Math. 10 (2019), 1, 32-45.
DOI |
MR 3922051
[288] Tri, P. V., Hoa, N. V., Phu, N. D.:
Sheaf fuzzy problems for functional differential equations. Adv. Differ. Equations 2014 (2014), Article number: 156.
DOI |
MR 3224018
[289] Villamizar-Roa, E. J., Angulo-Castillo, V., Chalco-Cano, Y.:
Existence of solutions to fuzzy differential equations with generalized Hukuhara derivative via contractive-like mapping principles. Fuzzy Sets Systems 265 (2015), 24-38.
DOI |
MR 3310325
[290] Vorobiev, D., Seikkala, S.:
Towards the theory of fuzzy differential equations. Fuzzy Sets Systems 125 (2002), 231-237.
DOI |
MR 1880339
[291] Vu, H.:
Random fuzzy differential equations with impulses. Complexity 2017 (2017), 1, 4056016.
DOI |
MR 3667715
[292] Vu, H., Hoa, N. V.:
On impulsive fuzzy functional differential equations. Iranian J. Fuzzy Systems 13 (2016), 4, 79-94.
DOI |
MR 3561637
[293] Vu, H., Dong, L. S., Phung, N. N.:
Application of contractive-like mapping principles to impulsive fuzzy functional differential equation. J. Intell. Fuzzy Systems 33 (2017), 2, 753-759.
DOI |
MR 3561637
[294] Wang, H.:
Monotone iterative method for boundary value problems of fuzzy differential equations. J. Intell. Fuzzy Systems 30 (2016), 2, 831-843.
DOI
[295] Wang, H.:
Two-point boundary value problems for first-order nonlinear fuzzy differential equation. J. Intell. Fuzzy Systems 30 (2016), 6, 3335-3347.
DOI
[296] Wang, H.:
Existence of solutions to boundary value problem for second order fuzzy differential equations. J. Intell. Fuzzy Systems 36 (2019), 1, 829-838.
DOI
[297] Wang, H.:
Boundary value problems for a class of first-order fuzzy delay differential equations. Mathematics 8 (2020), 5, 683.
DOI
[298] Wasques, V. F.:
A numerical approach to fuzzy partial differential equations with interactive fuzzy values: application to the heat equation. Comput. Appl. Math. 43 (2024), 6, Article 331.
DOI |
MR 4773246
[299] Wu, C., Song, S., Lee, E. S.:
Approximate solutions, existence, and uniqueness of the Cauchy problem of fuzzy differential equations. J. Math. Anal. Appl. 202 (1996), 2, 629-644.
DOI |
MR 1406252
[300] Xiaoping, X., Yongqiang, F.:
On the structure of solutions for fuzzy initial value problem. Fuzzy Sets Systems 157 (2006), 2, 212-229.
DOI |
MR 2186224
[301] Xu, J., Liao, Z., Hu, Z.:
A class of linear differential dynamical systems with fuzzy initial condition. Fuzzy Sets Systems 158 (2007), 21, 2339-2358.
DOI |
MR 2360320
[302] Xu, J., Liao, Z., Nieto, J. J.:
A class of linear differential dynamical systems with fuzzy matrices. J. Math. Anal. Appl. 368 (2010), 54-68.
DOI |
MR 2609258
[303] Xue, X., Fu, Y.:
Caratheodory solutions of fuzzy differential equations. Fuzzy Sets Systems 125 (2002), 2, 239-243.
DOI |
MR 1880340
[304] Yang, H., Chen, Y.:
Lyapunov stability of fuzzy dynamical systems based on fuzzy-number-valued function granular differentiability. Commun. Nonlinear Sci. Numer. Simul. 133 (2024), 107984.
DOI |
MR 4721512
[305] Yang, H., Wang, F., Gong, Z.:
Solving the BVP to a class of second-order linear fuzzy differential equations under granular differentiability concept. J. Intell. Fuzzy Systems 42 (2022), 6, 5483-5499.
DOI |
MR 4363607
[306] Yang, H., Wang, F., Wang, L.:
Solving the homogeneous BVP of second order linear FDEs with fuzzy parameters under granular differentiability concept. J. Intell. Fuzzy Systems 44 (2023), 4, 6327-6340.
DOI
[307] Yang, H., Wu, Y.:
The BVP of a class of second order linear fuzzy differential equations is solved by Green function method under the concept of granular differentiability. Comput. Appl. Math. 43 (2024), 5, 293.
DOI |
MR 4761422
[309] Zarei, H., Kamyad, A. V., Heydari, A. A.:
Fuzzy modeling and control of HIV infection. Comput. Math. Methods Medicine (2012), Article ID 893474.
DOI |
MR 2901049
[310] Zhang, D., Feng, W., Zhao, Y., Qiu, J.:
Global existence of solutions for fuzzy second-order differential equations under generalized H-differentiability. Comput. Math. Appl. 60 (2010), 6, 1548-1556.
DOI |
MR 2679123
[311] Zhao, H., Jia, L. Y., Chen, G. X.:
Convex (L,M)-fuzzy remote neighborhood operators. Kybernetika 60 (2024), 2, 150-171.
DOI |
MR 4757767
[312] Zhao, Y., Zhu, Y.:
Fuzzy optimal control of linear quadratic models. Comput. Math. Appl. 60 (2010), 67-73.
DOI |
MR 2651884
[313] Zhu, Y.:
Stability analysis of fuzzy linear differential equations. Fuzzy Optim. Decision Making 9 (2010), 169-186.
DOI |
MR 2643960