Previous |  Up |  Next

Article

Keywords:
fuzzy differential equations; interval differential equations; initial value problem; boundary value problem; bunch of functions; linear differential equations
Summary:
Dynamics containing deterministic uncertainties can be modeled with fuzzy differential equations. Unlike classical differential equations, fuzzy differential equations lack a unified interpretation and theoretical foundation, as researchers adopt different approaches to fuzziness, solution concepts, and underlying mathematical structures. The main reason is whether the fuzzy function derivative is used in the equation in question and, if it is used, what meaning it carries. Researchers who do not involve a derivative of a fuzzy number-valued function either use the extension principle, an alternative concept of fuzzy function, or transform the problem into a differential inclusion. Various definitions have been used in studies involving the derivatives of fuzzy number-valued functions. The main reason is that none of the known derivatives can fully meet the requirements: either the fuzziness increases excessively, or it becomes impossible to solve higher-order equations, or unnatural assumptions must be made. In this study, we tried to classify almost all studies on fuzzy differential equations. We compared the results of studies conducted in relatively recent years, particularly in initial value and boundary value problems, using examples. We discussed the possible direction of future research on fuzzy differential equations.
References:
[1] Abbasbandy, S., Nieto, J. J., Alavi, M.: Tuning of reachable set in one dimensional fuzzy differential inclusions. Chaos Solitons Fractals 26 (2005), 5, 1337-1341. DOI  | MR 2149318
[2] Agarwal, R. P., O'Regan, D., Lakshmikantham, V.: A stacking theorem approach for fuzzy differential equations. Nonlinear Analysis: Theory, Methods Appl. 55 (2003), 3, 299-312. DOI  | MR 2007476
[3] Ahmad, M. Z., Hasan, M. K., Baets, B. De: Analytical and numerical solutions of fuzzy differential equations. Inform. Sci. 236 (2013), 156-167. DOI  | MR 3042326
[4] Ahmadi, M. B., Kiani, N. A., Mikaeilvand, N.: Laplace transform formula on fuzzy $n$th-order derivative and its application in fuzzy ordinary differential equations. Soft Comput. 18 (2014), 12, 2461-2469. DOI 
[5] Ahmadian, A., Salahshour, S., Chan, C. S., Baleanu, D.: Numerical solutions of fuzzy differential equations by an efficient Runge-Kutta method with generalized differentiability. Fuzzy Sets Systems 331 (2018), 47-67. DOI  | MR 3733267
[6] Ahmady, N., Allahviranloo, T., Ahmady, E.: A modified Euler method for solving fuzzy differential equations under generalized differentiability. Comput. Appl. Mat. 39 (2020), 1-21. DOI  | MR 4075468
[7] Akın, Ö., Khaniyev, T., Oruç, Ö., Türkşen, I. B.: An algorithm for the solution of second order fuzzy initial value problems. Expert Systems Appl. 40 (2013), 953-957. DOI 
[8] Akram, M., Muhammad, G., Allahviranloo, T., Pedrycz, W.: Solution of initial-value problem for linear third-order fuzzy differential equations. Comput. Appl. Math. 41 (2022), 8, 398. DOI  | MR 4512249
[9] Alamin, A., Gazi, K. H., Mondal, S. P.: Solution of second order linear homogeneous fuzzy difference equation with constant coefficients by geometric approach. J. Decision Anal. Intell. Comput. 4 (2024), 1, 241-252. DOI 
[10] Alamin, A., Rahaman, M., Mondal, S. P.: Geometric approach for solving first order non-homogenous fuzzy difference equation. Spectrum Oper. Res. 2 (2025), 1, 61-71. DOI 
[11] Alavi, S. M.: A method for second-order linear fuzzy two-point boundary value problems based on the Hukuhara differentiability. Comput. Methods Differ. Equations 11 (2023), 3, 576-588. DOI  | MR 4603612
[12] Alguliyev, R., Aliguliyev, R., Sukhostat, L.: Method for quantitative risk assessment of cyber-physical systems based on vulnerability analysis. Kybernetika 60 (2024), 6, 779-796. DOI 
[13] Aliev, F. A., Niftiyev, A. A., Zeynalov, C. I.: Optimal synthesis problem for the fuzzy systems. Optim. Control Appl. Meth. 32 (2011), 660-667. DOI  | MR 2871836
[14] Alikhani, R., Mostafazadeh, M.: First order linear fuzzy differential equations with fuzzy variable coefficients. Comput. Methods Differ. Equations 9 (2021), 1, 1-21. DOI  | MR 4214720
[15] Allahviranloo, T., Abbasbandy, S., Ahmady, N., Ahmady, E.: Improved predictor-corrector method for solving fuzzy initial value problems. Inform. Sci. 179 (2009), 7, 945-955. DOI  | MR 2494128
[16] Allahviranloo, T., Abbasbandy, S., Behzadi, S. S.: Solving nonlinear fuzzy differential equations by using fuzzy variational iteration method. Soft Comput. 18 (2014), 2191-2200. DOI  | MR 3524863
[17] Allahviranloo, T., Abbasbandy, S., Salahshour, S., Hakimzadeh, A.: A new method for solving fuzzy linear differential equations. Computing 92 (2011), 181-197. DOI  | MR 2794923
[18] Allahviranloo, T., Ahmadi, M. B.: Fuzzy Laplace transforms. Soft Computing 14 (2010), 235-243. DOI 
[19] Allahviranloo, T., Ahmady, N., Ahmady, E.: Numerical solution of fuzzy differential equations by predictor-corrector method. Inform. Sci. 177 (2007), 7, 1633-1647. DOI  | MR 2303176
[20] Allahviranloo, T., Ahmady, N., Ahmady, E.: $n$th-order fuzzy linear differential equations. Inform. Sci. 178 (2008), 5, 1309-1324. DOI  | MR 2379397
[21] Allahviranloo, T., Ahmady, N., Ahmady, E.: A method for solving nth order fuzzy linear differential equations. Int. J. Comput. Math. 86 (2009), 4, 730-742. DOI  | MR 2514166
[22] Allahviranloo, T., Chehlabi, M.: Solving fuzzy differential equations based on the length function properties. Soft Comput. 19 (2015), 307-320. DOI 
[23] Allahviranloo, T., Gouyandeh, Z., Armand, A., Hasanoglu, A.: On fuzzy solutions for heat equation based on generalized Hukuhara differentiability. Fuzzy Sets Systems 265 (2015), 1-23. DOI  | MR 3310324
[24] Allahviranloo, T., Kermani, M. A.: Numerical methods for fuzzy linear partial differential equations under new definition for derivative. Iranian J. Fuzzy Systems 7 (2010), 3, 33-50. DOI  | MR 2722019
[25] Allahviranloo, T., Kiani, N. A., Barkhordari, M.: Toward the existence and uniqueness of solutions of second-order fuzzy differential equations. Inform. Sci. 179 (2009), 8, 1207-1215. DOI  | MR 2502096
[26] Allahviranloo, T., Kiani, N. A., Motamedi, N.: Solving fuzzy differential equations by differential transformation method. Inform. Sci. 179 (2009), 7, 956-966. DOI  | MR 2494129
[27] Allahviranloo, T., Shafiee, M., Nejatbakhsh, Y.: A note on "Fuzzy differential equations and the extension principle". Inform. Sci. 179 (2009), 2049-2051. DOI  | MR 2530972
[28] Arqub, O. Abu, Al-Smadi, M., Momani, S., Hayat, T.: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. 20 (2016), 3283-3302. DOI 
[29] Amrahov, Ş. E., Askerzade, I.: Strong solutions of the fuzzy linear systems. CMES: Computer Model. Engrg. Sci. 76 (2011), 3-4, 207-216. DOI  | MR 2893971
[30] Amrahov, Ş. E., Gasilov, N. A., Fatullayev, A. G.: A new approach to a fuzzy time-optimal control problem. CMES: Computer Model. Engrg. Sci. 99 (2014), 5, 351-369. DOI  | MR 3243120
[31] Amrahov, Ş. E., Khastan, A., Gasilov, N., Fatullayev, A. G.: Relationship between Bede-Gal differentiable set-valued functions and their associated support functions. Fuzzy Sets Systems 295 (2016), 57-71. DOI  | MR 3488877
[32] Arif, M. S., Shatanawi, W., Nawaz, Y.: A computational time integrator for heat and mass transfer modeling of boundary layer flow using fuzzy parameters. Partial Differ. Equations Appl. Math.13 (2025), 101113. DOI 
[33] Ashraf, S., Ahmed, I., Rashmanlou, H.: A new technique to solve fuzzy differential equations. J. Intell. Fuzzy Systems 34 (2018), 4, 2171-2176. DOI 
[34] Azbelev, N. V., Maksimov, V. P., Rakhmatullina, L. F.: Introduction to the Theory of Functional Differential Equations: Methods and Applications. Hindawi Pub. Co., 2007. MR 2319815
[35] Babolian, E., Sadeghi, H., Javadi, S.: Numerically solution of fuzzy differential equations by Adomian method. Appl. Math. Computation 149 (2004), 2, 547-557. DOI  | MR 2033089
[36] Balasubramaniam, P., Muralisankar, S.: Existence and uniqueness of a fuzzy solution for the nonlinear fuzzy neutral functional differential equation. Computers Math. Appl. 42 (2001), 6-7, 961-967. DOI  | MR 1846200
[37] Banks, H. T., Jacobs, M. Q.: A differential calculus for multifunctions. J. Math. Anal. Appl. 29 (1970), 246-272. DOI  | MR 0265937
[38] Barros, L. C., Gomes, L. T., Tonelli, P. A.: Fuzzy differential equations: An approach via fuzzification of the derivative operator. Fuzzy Sets Systems 230 (2013), 39-52. DOI 10.1016/j.fss.2013.03.004 | MR 3104326
[39] Barros, L. C. de, Pedro, F. Santo: Fuzzy differential equations with interactive derivative. Fuzzy Sets Systems 309 (2017), 64-80. DOI  | MR 3582751
[40] Bartwal, P., Upreti, H., Pandey, A. K., Joshi, N., Joshi, B. P.: Application of modified Fourier's law in a fuzzy environment to explore the tangent hyperbolic fluid flow over a non-flat stretched sheet using the LWCM approach. Int. Commun. Heat Mass Transfer 153 (2024), 107332. DOI 
[41] Barzinji, K., Maan, N., Aris, N.: Linear fuzzy delay differential system: Analysis on stability of steady state. Matematika 30 (2014), 1a, 1-7. DOI  | MR 3300194
[42] Bede, B.: A note on two-point boundary value problems associated with non-linear fuzzy differential equations. Fuzzy Sets Systems 157 (2006), 986-989. DOI  | MR 2212488
[43] Bede, B.: Note on Numerical solutions of fuzzy differential equations by predictor-corrector method. Inform. Sci. 178 (2008), 7, 1917-1922. DOI  | MR 2404488
[44] Bede, B., Gal, S. G.: Almost periodic fuzzy-number-valued functions. Fuzzy Sets Systems 147 (2004), 385-403. DOI  | MR 2100833
[45] Bede, B., Gal, S. G.: Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Systems 151 (2005), 581-599. DOI  | MR 2126175
[46] Bede, B., Rudas, I. J., Bencsik, A. L.: First order linear fuzzy differential equations under generalized differentiability. Inform. Sci. 177 (2007), 1648-1662. DOI  | MR 2303177
[47] Bede, B., Rudas, I. J.: Shooting method for fuzzy two-point boundary value problems. In: Proc. of 2012 Annual Meeting of the NAFIPS (North American Fuzzy Information Processing Society), (2012), pp. 1-4. DOI 
[48] Bede, B., Stefanini, L.: Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Systems 230 (2013), 119-141. DOI  | MR 3104331
[49] Bejines, C.: Aggregation of fuzzy vector spaces. Kybernetika 59 (2023), 5, 752-767. DOI  | MR 4681021
[50] Bertone, A. M., Jafelice, R. M., Barros, L. C. de, Bassanezi, R. C.: On fuzzy solutions for partial differential equations. Fuzzy Sets Systems 219 (2013), 68-80. DOI  | MR 3035734
[51] Bhaskar, T. G., Lakshmikantham, V., Devi, V.: Revisiting fuzzy differential equations. Nonlinear Analysis: Theory Methods Appl. 58 (2004), 3-4, 351-358. DOI  | MR 2073530
[52] Bhattacharyya, R., Jha, B. K.: Analyzing fuzzy boundary value problems: a study on the influence of mitochondria and ER fluxes on calcium ions in neuron cells. J. Bioenergetics Biomembranes 56 (2024), 1, 15-29. DOI 
[53] Blagodatskikh, V. I., Filippov, A. F.: Differential inclusions and optimal control. In: Proc. Steklov Inst. Math. 169 (1986), 199-259. MR 0836575
[54] Buckley, J. J., Feuring, T.: Introduction to fuzzy partial differential equations. Fuzzy Sets Systems 105 (1999), 241-248. DOI  | MR 1695579
[55] Buckley, J. J., Feuring, T.: Fuzzy differential equations. Fuzzy Sets Systems 110 (2000), 43-54. DOI  | MR 1748107
[56] Buckley, J. J., Feuring, T.: Fuzzy initial value problem for Nth-order linear differential equations. Fuzzy Sets Syst. 121 (2001), 247-255. DOI  | MR 1834509
[57] Buckley, J. J., Feuring, T., Hayashi, Y.: Linear systems of first order ordinary differential equations: Fuzzy initial conditions. Soft Computing 6 (2002), 415-421. DOI  | MR 1748107
[58] Cabral, V. M., Barros, L. C.: Fuzzy differential equation with completely correlated parameters. Fuzzy Sets Systems 265 (2015), 86-98. DOI  | MR 3310328
[59] Cabral, V. M., Barros, L. C.: On differential equations with interactive fuzzy parameter via t-norms. Fuzzy Sets Systems 358 (2019), 97-107. DOI  | MR 3913070
[60] Ceylan, T.: On interactive solution for two point fuzzy boundary value problem. J. Universal Math. 7 (2024), 2, 85-98. DOI 
[61] Ceylan, T., Altinisik, N.: Two point fuzzy boundary value problem with eigenvalue parameter contained in the boundary condition. Malaya J. Matematik 6 (2018), 4, 766-773. DOI  | MR 3891651
[62] Chalco-Cano, Y., Román-Flores, H.: On the new solution of fuzzy differential equations. Chaos Solitons Fractals 38 (2008), 1, 112-119. DOI  | MR 2417648
[63] Chalco-Cano, Y., Román-Flores, H.: Comparison between some approaches to solve fuzzy differential equations. Fuzzy Sets Systems 160 (2009), 11, 1517-1527. DOI  | MR 2510139
[64] Chalco-Cano, Y., Román-Flores, H.: Some remarks on fuzzy differential equations via differential inclusions. Fuzzy Sets Systems 230 (2013), 3-20. DOI  | MR 3104324
[65] Chalco-Cano, Y., Román-Flores, H., Jimenez-Gamero, M. D.: Generalized derivative and $\pi$-derivative for set-valued functions. Inform. Sci. 181 (2011), 11, 2177-2188. DOI  | MR 2781778
[66] Chang, S. L., Zadeh, L. A.: On fuzzy mapping and control. IEEE Trans. Systems Man Cybernet. 2 (1972), 330-340. DOI  | MR 0363548
[67] Chehlabi, M.: Continuous solutions to a class of first-order fuzzy differential equations with discontinuous coefficients. Comput. Appl. Math. 37 (2018), 5058-5081. DOI  | MR 3848581
[68] Chehlabi, M., Allahviranlo, T.: Positive or negative solutions to first-order fully fuzzy linear differential equations under generalized differentiability. Appl. Soft Comput. 70 (2018), 359-370. DOI 
[69] Chen, M., Han, C.: Some topological properties of solutions to fuzzy differential systems. Inform. Sci. 197 (2012), 207-214. DOI  | MR 2910017
[70] Chen, M., Wu, C., Xue, X., Liu, G.: On fuzzy boundary value problems. Inform. Sci. 178 (2008), 1877-1892. DOI  | MR 2404485
[71] Chen, M., Wu, C., Xue, X., Liu, G.: Two-point boundary value problems of undamped uncertain dynamical systems. Fuzzy Sets Systems 159 (2008), 2077-2089. DOI  | MR 2431801
[72] Chen, Y. Y., Chang, Y. T., Chen, B. S.: Fuzzy solutions to partial differential equations: Adaptive approach. IEEE Trans. Fuzzy Systems 17 (2009), 116-127. DOI 
[73] Cruz-Suarez, H., Montes-de-Oca, R., Ortega-Gutiarrez, R. I.: An extended version of average Markov decision processes on discrete spaces under fuzzy environment. Kybernetika 59 (2023), 1, 160-178. DOI  | MR 4567846
[74] Congxin, W., Shiji, S.: Existence theorem to the Cauchy problem of fuzzy differential equations under compactness-type conditions. Inform. Sci. 108 (1998), 1-4, 123-134. DOI  | MR 1632507
[75] Citil, H. G.: Comparisons of the exact and the approximate solutions of second-order fuzzy linear boundary value problems. Miskolc Math. Notes 20 (2019), 2, 823-837. DOI  | MR 4059278
[76] Citil, H. G.: Important notes for a fuzzy boundary value problem. Appl. Math. Nonlinear Sci. 4 (2019), 2, 305-314. DOI  | MR 3993415
[77] Dahalan, A. A., Muthuvalu, M. S., Sulaiman, J.: Successive over relaxation method in solving two-point fuzzy boundary value problems. AIP Conf. Proc. 1522 (2013), 116-124. DOI 
[78] Dai, R., Chen, M.: On the structural stability for two-point boundary value problems of undamped fuzzy differential equations. Fuzzy Sets Systems 400 (2020), 134-146. DOI  | MR 4527411
[79] Dai, R., Chen, M.: The structure stability of periodic solutions for first-order uncertain dynamical systems. Fuzzy Sets Systems 453 (2023), 95-114. DOI  | MR 4160572
[80] Dai, R., Chen, M., Morita, H.: Fuzzy differential equations for universal oscillators. Fuzzy Sets Systems 347 (2018), 89-104. DOI  | MR 3812770
[81] Darabi, P., Moloudzadeh, S., Khandani, H.: A numerical method for solving first-order fully fuzzy differential equation under strongly generalized H-differentiability. Soft Computing 20 (2016), 4085-4098. DOI 
[82] Diamond, P.: Stability and periodicity in fuzzy differential equations. IEEE Trans. Fuzzy Syst. 8 (2000), 5, 583-590. DOI 
[83] Diamond, P.: Brief note on the variation of constants formula for fuzzy differential equations. Fuzzy Sets Systems 129 (2002), 1, 65-71. DOI  | MR 1907997
[84] Ding, Z., Ma, M., Kandel, A.: Existence of the solutions of fuzzy differential equations with parameters. Inform. Sci. 99 (1997), 3-4, 205-217. DOI  | MR 1448048
[85] Dizicheh, A. K., Salahshour, S., Ismail, F. B.: A note on Numerical solutions of fuzzy differential equations by extended Runge-Kutta-like formulae of order 4. Fuzzy Sets Systems 233 (2013, 96-100. DOI  | MR 3124242
[86] Donchev, T., Nosheen, A.: Fuzzy functional differential equations under dissipative-type conditions. Ukrainian Math. J. 65 (2013), 6, 873-883. DOI  | MR 3138178
[87] Dubois, D., Prade, H.: Towards fuzzy differential calculus: Part 3, Differentiation. Fuzzy Sets Systems 8 (1982), 225-233. DOI  | MR 0669414
[88] Effati, S., Pakdaman, M.: Artificial neural network approach for solving fuzzy differential equations. Information Sciences 180(8) (2010) 1434-1457. DOI  | MR 2587915
[89] ElJaoui, E., Melliani, S., Chadli, L. S.: Solving second-order fuzzy differential equations by the fuzzy Laplace transform method. Advances Difference Equations 2015 (2015), 1-14. DOI  | MR 3316765
[90] Epstein, I. R., Luo, Y.: Differential delay equations in chemical kinetics. Nonlinear models: The cross-shaped phase diagram and the Oregonator. J. Chemical Physics 95 (1991), 1, 244-254. DOI 
[91] Epuganti, U. M. R., Tenali, G. B.: Solutions of non-homogeneous linear set-valued differential equations. Nonlinear Analysis: Real World Applications 87 (2026), 104411. DOI  | MR 4910529
[92] Esmi, E., Sanchez, D. E., Wasques, V. F., Barros, L. C.: Solutions of higher order linear fuzzy differential equations with interactive fuzzy values. Fuzzy Sets Systems 419 (2021), 122-140. DOI  | MR 4269566
[93] Farahi, M. H., Barati, S.: Fuzzy time-delay dynamical systems. J. Math. Computer Sci. 2 (2011), 1, 44-53. DOI 
[94] Farajzadeh, A., Hosseinpour, A., Kumam, W.: On boundary value problems in normed fuzzy spaces. Thai J. Math. 20 (2022), 1, 305-313. DOI  | MR 4429132
[95] Fard, O. S., Esfahani, A., Kamyad, A. V.: On solution of a class of fuzzy BVPs. Iranian J. Fuzzy Systems 9 (2012), 1, 49-60. DOI  | MR 2954112
[96] Fard, O. S., Ghal-Eh, N.: Numerical solutions for linear system of first-order fuzzy differential equations with fuzzy constant coefficients. Inform. Sci. 181 (2011), 4765-4779. DOI  | MR 2823259
[97] Fatullayev, A. G., Köroglu, C.: Numerical solving of a boundary value problem for fuzzy differential equations. CMES: Computer Model. Engrg. Sci. 86 (2012), 1, 39-52. DOI  | MR 3026653
[98] Fatullayev, A. G., Can, E., Köroglu, C.: Numerical solution of a boundary value problem for a second order fuzzy differential equation. TWMS J. Pure Appl. Math. 4 (2013), 2, 169-176. MR 3157375
[99] Fatullayev, A. G., Gasilov, N. A., Amrahov, S. Emrah: Numerical solution of linear inhomogeneous fuzzy delay differential equations. Fuzzy Optim. Decision Making 18 (2019), 315-326. DOI  | MR 3990210
[100] Filev, D., Angelov, P.: Fuzzy optimal control. Fuzzy Sets Systems 47 (1992), 2, 151-156. DOI  | MR 1166266
[101] Fook, T. K., Ibrahim, Z. B.: Block backward differentiation formulas for solving second order fuzzy differential equations. Matematika 33 (2017), 2, 215-226. DOI  | MR 3798490
[102] Friedman, M., Ming, M., Kandel, A.: On the validity of the Peano theorem for fuzzy differential equations. Fuzzy Sets Systems 86 (1997), 3, 331-334. DOI  | MR 1454194
[103] Garg, H.: A novel approach for solving fuzzy differential equations using Runge-Kutta and Biogeography-based optimization. J. Intell. Fuzzy Systems 30 (2016), 4, 2417-2429. DOI 
[104] Gasilov, N. A., Amrahov, Ş. E.: Solving a nonhomogeneous linear system of interval differential equations. Soft Computing 22 (2018), 12, 3817-3828. DOI 
[105] Gasilov, N. A., Amrahov, Ş. E., Fatullayev, A. G., Karakas, H. I., Akin, O.: A geometric approach to solve fuzzy linear systems. CMES: Computer Model. Engrg. Sci. 75 (2011), 3-4, 189-203. DOI  | MR 2867758
[106] Gasilov, N. A., Amrahov, Ş. E., Fatullayev, A. G., Karakas, H. I., Akin, O.: Application of geometric approach for fuzzy linear systems to a fuzzy input-output analysis. CMES: Computer Model. Engrg. Sci. 88 (2012), 2, 93-106. DOI  | MR 3025105
[107] Gasilov, N. A., Amrahov, Ş. E., Fatullayev, A. G.: A geometric approach to solve fuzzy linear systems of differential equations. Appl. Math. Inf. Sci. 5 (2011), 3, 484-495. MR 2837659
[108] Gasilov, N., Amrahov, Ş. E., Fatullayev, A. G.: Linear differential equations with fuzzy boundary values. In: Proc. 5th International Conference on Application of Information and Communication Technologies, IEEE 2011, pp. 696-700. DOI 
[109] Gasilov, N. A., Amrahov, Ş. E., Fatullayev, A. G.: On solutions of initial-boundary value problem for fuzzy partial differential equations. In: Proc. 7th Int. Conf. on Application of Information and Communication Technologies (AICT2013), Baku 2013, pp. 410-412. DOI 
[110] Gasilov, N., Amrahov, Ş. E., Fatullayev, A. G.: Solution of linear differential equations with fuzzy boundary values. Fuzzy Sets Systems 257 (2014), 169-183. DOI  | MR 3267136
[111] Gasilov, N. A., Amrahov, Ş. E., Fatullayev, A. G., Hashimoglu, I. F.: Solution method for a boundary value problem with fuzzy forcing function. Inform. Sci. 317 (2015), 349-368. DOI  | MR 3350716
[112] Gasilov, N. A., Fatullayev, A. G., Amrahov, Ş. E.: Solution of non-square fuzzy linear systems. J. Multiple-valued Logic Soft Computing 20 (2013), 3-4, 221-237. MR 3059171
[113] Gasilov, N. A., Fatullayev, A. G., Amrahov, Ş. E.: Solution method for a non-homogeneous fuzzy linear system of differential equations. Appl. Soft Comput. 70 (2018), 225-237. DOI 
[114] Gasilov, N. A., Fatullayev, A. G., Amrahov, Ş. E., Khastan, A.: A new approach to fuzzy initial value problem. Soft Comput. 18 (2014), 217-225. DOI 
[115] Gasilov, N. A., Amrahov, Ş. E., Fatullayev, A. G.: On a solution of the fuzzy Dirichlet problem for the heat equation. Int. J. Thermal Sci. 103 (2016), 67-76. DOI 
[116] Gasilov, N. A., Amrahov, Ş. E.: On differential equations with interval coefficients. Math. Methods Appl. Sci. 43 (2020), 4, 1825-1837. DOI  | MR 4067025
[117] Gasilov, N. A., Hashimoglu, I. F., Amrahov, Ş. E., Fatullayev, A. G.: A new approach to non-homogeneous fuzzy initial value problem. CMES: Computer Model. Engrg. Sci. 85 (2012), 4, 367-378. DOI  | MR 3013661
[118] Gasilov, N. A., Kaya, M.: A method for the numerical solution of a boundary value problem for a linear differential equation with interval parameters. Int. J. Comput. Methods 16 (2019), 7, Article 1850115. DOI  | MR 3985227
[119] Georgiou, D. N., Nieto, J. J., Rodríguez-López, R.: Initial value problems for higher-order fuzzy differential equations. Nonlinear Analysis: Theory, Methods Appl. 63 (2005), 4, 587-600. DOI  | MR 2175817
[120] Ghazanfari, B., Niazi, S., Ghazanfari, A. G.: Linear matrix differential dynamical systems with fuzzy matrices. Appl. Math. Modell. 36 (2012), 348-356. DOI  | MR 2835016
[121] Ghazanfari, B., Shakerami, A.: Numerical solutions of fuzzy differential equations by extended Runge-Kutta-like formulae of order 4. Fuzzy Sets Systems 189, 1, 74-91. DOI  | MR 2871354
[122] Gholami, N., Allahviranloo, T., Abbasbandy, S., Karamikabir, N.: Fuzzy reproducing kernel space method for solving fuzzy boundary value problems. Math. Sci. 13 (2019), 97-103. DOI  | MR 3976707
[123] Gomes, L. T., Barros, L. C.: Fuzzy calculus via extension of the derivative and integral operators and fuzzy differential equations. In: Proc. of 2012 Annual Meeting of the NAFIPS (North American Fuzzy Information Processing Society), IEEE 2012, pp. 1-5. DOI  | MR 3379940
[124] Gopal, D., Martinez-Moreno, J., Özgür, N.: On fixed figure problems in fuzzy metric spaces. Kybernetika 59 (2023), 1, 110-129. DOI  | MR 4567844
[125] Gopal, D., Martinez-Moreno, J., Rodriguez-López, J. R.: Asymptotic fuzzy contractive mappings in fuzzy metric spaces. Kybernetika 60 (2024, 3, 394-411. DOI  | MR 4777315
[126] Guo, M., Peng, X., Xu, Y.: Oscillation property for fuzzy delay differential equations. Fuzzy Sets Systems 200 (2012), 25-35. DOI  | MR 2927842
[127] Hakim, M., Zitouni, R.: An approach to solve a fuzzy bi-objective multi-index fixed charge transportation problem. Kybernetika 60 (2024), 3, 271-292. DOI  | MR 4777310
[128] Hale, J. K.: Functional Differential Equations. Springer, New York 1971. DOI  | MR 0466837
[129] Hashemi, M. S., Malekinagad, J., Marasi, H. R.: Series solution of the system of fuzzy differential equations. Adv. Fuzzy Systems (2012) Article ID 407647, 16 pages. DOI  | MR 2968404
[130] Harir, A., Harfi, H. El, Melliani, S., Chadli, L. C.: Fuzzy solutions of the SIR models using VIM. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 30 (2022), 01, 43-61. DOI  | MR 4381273
[131] Hoa, N. V., Allahviranloo, T., Vu, H.: On the stability for the fuzzy initial value problem. J. Intell. Fuzzy Systems 39 (2020), 5, 7747-7755. DOI 
[132] Hoa, N. V., Tri, P. V., Dao, T. T., Zelinka, I.: Some global existence results and stability theorem for fuzzy functional differential equations. J. Intell. Fuzzy Systems 28 (2015), 1, 393-409. DOI  | MR 3301444
[133] Hosseini, M. M., Saberirad, F., Davvaz, B.: Numerical solution of fuzzy differential equations by variational iteration method. Int. J. Fuzzy Systems 18 (2016), 875-882. DOI  | MR 3551928
[134] Hukuhara, M.: Intégration des applications mesurables dont la valeur est un compact convexe. Funkcialaj Ekvacioj 10 (1967), 205-223. MR 0226503
[135] Hüllermeier, E.: An approach to modeling and simulation of uncertain dynamical systems. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 5 (1997), 2, 117-137. DOI  | MR 1444079
[136] Hüllermeier, E.: Numerical methods for fuzzy initial value problems. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 7 (1999), 5, 439-461. DOI  | MR 1736204
[137] Isa, S., Majid, Z. Abdul, Ismail, F., Rabiei, F.: Diagonally implicit multistep block method of order four for solving fuzzy differential equations using Seikkala derivatives. Symmetry 10 (2018), 2, 42. DOI 
[138] Isaks, R.: Properties of quantum logic maps as fuzzy relations on a set of all symmetric and idempotent binary matrices. Kybernetika 60 (2024), 5, 682-689. DOI  | MR 4848306
[139] Jafari, R., Razvarz, S.: Solution of fuzzy differential equations using fuzzy Sumudu transforms. Math. Comput. Appl. 23 (2018), 1, 5. DOI  | MR 3789716
[140] Jafari, H., Saeidy, M., Baleanu, D.: The variational iteration method for solving n-th order fuzzy differential equations. Central European J. Physics 10 (2012), 76-85. DOI 
[141] Jafari, R., Yu, W., Li, X., Razvarz, S.: Numerical solution of fuzzy differential equations with Z-numbers using Bernstein neural networks. Int. J. Comput. Intell. Systems 10 (2017), 1, 1226-1237. DOI  | MR 3789716
[142] Jafelice, R. M., Almeida, C. G., Meyer, J. F., Vasconcelos, H. L.: Fuzzy parameter in a partial differential equation model for population dispersal of leaf-cutting ants. Nonlinear Analysis: Real World Appl. 12 (2011), 3397-3412. DOI  | MR 2832980
[143] Jafelice, R. M., Barros, L. C., Bassanezi, R. C., Gomide, F.: Fuzzy modeling in symptomatic HIV virus infected population. Bull. Math. Biology 66 (2004), 6, 1597-1620. DOI  | MR 2253264
[144] Jafelice, R. M., Barros, L. C., Bassanezi, R. C.: A fuzzy delay differential equation model for HIV dynamics. In: Proc. IFSA/EUSFLAT Conference 2009, pp. 265-270.
[145] Jamal, N., Sarwar, M., Hussain, S., Mukheimer, A.: Existence criteria for the unique solution of first order linear fuzzy differential equations on the space of linearly correlated fuzzy numbers. Fractals 30 (2022), 8, 2240221. DOI  | MR 4363606
[146] Jamal, N., Sarwar, M., Khashan, M. M.: Hyers-Ulam stability and existence criteria for the solution of second order fuzzy differential equations. J. Function Spaces 2021 (2021), 1, 6664619. DOI  | MR 4268061
[147] Jamal, N., Sarwar, M., Mlaiki, N., Aloqaily, A.: Solution of linear correlated fuzzy differential equations in the linear correlated fuzzy spaces. AIMS Mathematics 9 (2024), 2, 2695-2721. DOI  | MR 4685429
[148] Jameel, A. F., Anakira, N. R., Rashidi, M. M., Alomari, A. K., Saaban, A., Shakhatreh, M. A.: Differential transformation method for solving high order fuzzy initial value problems. Italian J. Pure Appl. Math. 39 (2018) 194-208. DOI 
[149] Jameel, A., Anakira, N. R., Alomari, A. K., Hashim, I., Shakhatreh, M. A.: Numerical solution of $n$th order fuzzy initial value problems by six stages. J. Nonlinear Sci. Appl. 9 (2016), 2, 627-640. DOI  | MR 3416277
[150] Jameel, A. F., Saaban, A., Zureigat, H. H.: Numerical solution of second-order fuzzy nonlinear two-point boundary value problems using combination of finite difference and Newton's methods. Neural Computing Appl. 30 (2018), 3167-3175. DOI 
[151] Jamshidi, L., Avazpour, L.: Solution of the fuzzy boundary value differential equations under generalized differentiability by shooting method. J. Fuzzy Set Valued Analysis (2012), Article ID jfsva-00136, 19 pages. DOI  | MR 3037946
[152] Jiang, C., Zhou, D. H.: Fault detection and identification for uncertain linear time-delay systems. Computers Chemical Engrg. 30, (2005), 2, 228-242. DOI 
[153] Jin, Z., Wu, J.: On the Ulam stability of fuzzy differential equations. AIMS Mathematics 5 (2020), 6, 6006-6019. DOI  | MR 4148928
[154] Kaleva, O.: Fuzzy differential equations. Fuzzy Sets Systems 24 (1987), 301-317. DOI  | MR 0919058 | Zbl 1100.34500
[155] Kaleva, O.: The Cauchy problem for fuzzy differential equations. Fuzzy Sets Systems 35 (1990), 389-396. DOI  | MR 1055256
[156] Kaleva, O.: The Peano theorem for fuzzy differential equations revisited. Fuzzy Sets Systems 98 (1998), 1, 147-148. DOI  | MR 1640147
[157] Kaleva, O.: A note on fuzzy differential equations. Nonlinear Anal. 64 (2006) 895-900. DOI  | MR 2196799
[158] Kanagarajan, K., Suresh, R.: Runge-Kutta method for solving fuzzy differential equations under generalized differentiability. Comput. Appl. Math. 37 (2018), 1294-1305. DOI  | MR 3804128
[159] Kandel, A., Byatt, W. J.: Fuzzy differential equations. In: Proc. Int. Conf. on Cybernetics and Society, Tokyo 1978, pp. 213-1216. MR 0707701
[160] Karami, A., Rezaei, E., Shahhosseni, M., Aghakhani, M.: Fuzzy logic to predict the heat transfer in an air cooler equipped with different tube inserts. Int. J. Thermal Sci. 53 (2012), 141-147. DOI 
[161] Karpagappriya, S., Alessa, N., Jayaraman, P., Loganathan, K.: A novel approach for solving fuzzy differential equations using cubic spline method. Math. Problems Engrg. 2021 (2021), 1, 5553732. DOI  | MR 4265307
[162] Kartli, N., Bostanci, E., Guzel, M. S.: Heuristic algorithm for an optimal solution of fully fuzzy transportation problem. Computing 106 (2024), 10, 3195-3227. DOI  | MR 4794582
[163] Khastan, A., Bahrami, F., Ivaz, K.: New results on multiple solutions for $n$th-order fuzzy differential equations under generalized differentiability. Boundary Value Problems (2009), Article ID 395714. DOI  | MR 2530281
[164] Khastan, A., Ivaz, K.: Numerical solution of fuzzy differential equations by Nyström method. Chaos Solitons Fractals 41 (2009), 2, 859-868. DOI  | MR 2535621
[165] Khastan, A., Nieto, J. J.: A boundary value problem for second-order fuzzy differential equations. Nonlinear Anal. 72 (2010), 3583-3593. DOI  | MR 2606803
[166] Khastan, A., Nieto, J. J., Rodríguez-López, R.: Fuzzy delay differential equations under generalized differentiability. Inform. Sci. 275 (2014), 145-167. DOI  | MR 3205624
[167] Khastan, A., Nieto, J. J., Rodríguez-López, R.: Variation of constant formula for first order fuzzy differential equations. Fuzzy Sets Systems 177 (2011), 20-33. DOI  | MR 2812829
[168] Khastan, A., Nieto, J. J., Rodríguez-López, R.: Periodic boundary value problems for first-order linear differential equations with uncertainty under generalized differentiability. Inform. Sci. 222 (2013), 544-558. DOI  | MR 2998530
[169] Khastan, A., Nieto, J. J., Rodríguez-López, R.: Fuzzy delay differential equations under generalized differentiability. Inform. Sci. 275 (2014), 145-167. DOI  | MR 3205624
[170] Khastan, A., Perfilieva, I., Alijani, Z.: A new fuzzy approximation method to Cauchy problems by fuzzy transform. Fuzzy Sets Systems 288 (2016), 75-95. DOI  | MR 3452803
[171] Khastan, A., Rodríguez-López, R.: On the solutions to first order linear fuzzy differential equations. Fuzzy Sets Systems 295 (2016), 114-135. DOI  | MR 3488880
[172] Khastan, A., Rodríguez-López, R.: On periodic solutions to first order linear fuzzy differential equations under differential inclusions approach. Inform. Sci. 322 (2015, 31-50. DOI  | MR 3389888
[173] Khastan, A., Rodríguez-López, R.: On linear fuzzy differential equations by differential inclusions' approach. Fuzzy Sets Systems 387 (2020), 49-67. DOI  | MR 4080004
[174] Khodadadi, E., Karabacak, M., Çelik, E.: Numerical solutions of fuzzy linear fractional differential equations with Laplace transforms under Caputo-type H-differentiability. J. Math. 2025 (2025), 1, 9998269. DOI  | MR 4896493
[175] Kichmarenko, O. D., Skripnik, N. V.: Averaging of fuzzy differential equations with delay. Nonlinear Oscillations 11 (2008), 3, 331-344. DOI  | MR 2512747
[176] Kloeden, P. E.: Remarks on Peano-like theorems for fuzzy differential equations. Fuzzy Sets Systems 44 (1991), 1, 161-163. DOI  | MR 1133991
[177] Kloeden, P. E., Lorenz, T.: Fuzzy differential equations without fuzzy convexity. Fuzzy Sets Systems 230 (2013) 65-81. DOI  | MR 3104328
[178] Komleva, T. A., Plotnikov, A. V., Skripnik, N. V.: Differential equations with set-valued solutions. Ukrainian Math. J. 60 (2008), 10, 1540-1556. DOI  | MR 2518586
[179] Kramosil, I., Michálek, J.: Fuzzy metrics and statistical metric spaces. Kybernetika 11 (1975), 5, 336-344. MR 0410633 | Zbl 0319.54002
[180] Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, Boston 1993. MR 1218880 | Zbl 0777.34002
[181] Laksmikantham, V.: Set differential equations versus fuzzy differential equations. Appl. Math. Comput. 164 (2005), 2, 277-294. DOI  | MR 2131157
[182] Lakshmikantham, V., Leela, S.: Stability theory of fuzzy differential equations via differential inequalities. Math. Inequalit. Appl. 2 (1999), 551-559. DOI  | MR 1717048
[183] Lakshmikantham, V., Murty, K. N., Turner, J.: Two-point boundary value problems associated with non-linear fuzzy differential equations. Math. Inequalit. Appl. 4 (2001), 527-533. MR 1859659
[184] Lakshmikantham, V., Nieto, J. J.: Differential equations in metric spaces: an introduction and an application to fuzzy differential equations. Dynamics Continuous Discrete Impulsive Systems: Series A 10 (2003), 6, 991-1000. MR 2008760
[185] Li, D., Chen, M., Xue, X.: Two-point boundary value problems of uncertain dynamical systems. Fuzzy Sets Systems 179 (2011), 50-61. DOI  | MR 2818197
[186] Li, J., Zhao, A., Yan, J.: The Cauchy problem of fuzzy differential equations under generalized differentiability. Fuzzy Sets Systems 200 (2012), 1-24. DOI  | MR 2927841
[187] Liu, B.: Fuzzy process, hybrid process and uncertain process. J. Uncertain Systems 2 (2008), 1, 3-16.
[188] Liu, H.-K.: Comparison results of two-point fuzzy boundary value problems. Int. J. Comput. Math. Sci. 5 (2011), 1-7. MR 2659268
[189] Liu, R., Feckan, M., Wang, J., O'Regan, D.: Ulam type stability for first-order linear and nonlinear impulsive fuzzy differential equations. Int. J. Computer Math. 99 (2022), 6, 1281-1303. DOI  | MR 4412125
[190] Liu, R., Wang, J., O'Regan, D.: Ulam type stability of first-order linear impulsive fuzzy differential equations. Fuzzy Sets Systems 400 (2020), 34-89. DOI  | MR 4160570
[191] Liu, X. M., Jiang, J., Hong, L.: A numerical method to solve a fuzzy differential equation via differential inclusions. Fuzzy Sets Systems 404 (2021), 38-61. DOI  | MR 4174517
[192] Long, H. V., Nieto, J. J., Son, N. T. K.: New approach for studying nonlocal problems related to differential systems and partial differential equations in generalized fuzzy metric spaces. Fuzzy Sets Systems 331 (2018), 26-46. DOI  | MR 3733266
[193] Lupulescu, V.: Initial value problem for fuzzy differential equations under dissipative conditions. Inform. Sci. 178 (2008), 23, 4523-4533. DOI  | MR 2467124
[194] Lupulescu, V.: On a class of fuzzy functional differential equations. Fuzzy Sets Systems 160 (2009), 11, 1547-1562. DOI  | MR 2510141
[195] Lupulescu, V., Abbas, U.: Fuzzy delay differential equations. Fuzzy Optim. Decision Making 11 (2012), 1, 99-111. DOI  | MR 2881511
[196] Ma, M., Friedman, M., Kandel, A.: Numerical solutions of fuzzy differential equations. Fuzzy Sets Systems 105 (1999), 1, 133-138. DOI  | MR 1688006
[197] Macias-Diaz, J. E., Tomasiello, S.: A differential quadrature-based approach a la Picard for systems of partial differential equations associated with fuzzy differential equations. J. Comput. Appl. Math. 299 (2016), 15-23. DOI  | MR 3452844
[198] Mahata, A., Mondal, S. P., Ahmadian, A., Ismail, F., Alam, S., Salahshour, S.: Different solution strategies for solving epidemic model in imprecise environment. Complexity 2018 (2018), 1, 4902142. DOI  | MR 3872483
[199] Malinowski, M. T.: On random fuzzy differential equations. Fuzzy Sets Systems 160 (2009), 21, 3152-3165. DOI  | MR 2567099
[200] Malinowski, M. T.: Existence theorems for solutions to random fuzzy differential equations. Nonlinear Analysis: Theory Methods Appl. 73 (2010), 6, 1515-1532. DOI  | MR 2661337
[201] Malinowski, M. T.: Random fuzzy differential equations under generalized Lipschitz condition. Nonlinear Analysis: Real World Appl. 13 (2012), 2, 860-881. DOI  | MR 2846886
[202] Malinowski, M. T.: On set differential equations in Banach spaces - A second type Hukuhara differentiability approach. Appl. Math. Comput. 219 (2012), 1, 289-305. DOI  | MR 2949593
[203] Malinowski, M. T.: Ito type stochastic fuzzy differential equations with delay. Systems Control Lett. 61 (2012), 6, 692-701. DOI  | MR 2924213
[204] Malinowski, M. T.: Some properties of strong solutions to stochastic fuzzy differential equations. Inform. Sci. 252 (2013), 62-80. DOI  | MR 3123920
[205] Malinowski, M. T.: Stochastic fuzzy differential equations of a non-increasing type. Commun. Nonlinear Sci. Numer. Simul. 33 (2016), 99-117. DOI  | MR 3417172
[206] Malinowski, M. T., Michta, M.: Stochastic fuzzy differential equations with an application. Kybernetika 47 (2011), 1, 123-143. DOI  | MR 2807869
[207] Martynyuk, A. A., Stamova, I. M., Chernienko, V. A.: Stability analysis of uncertain impulsive systems via fuzzy differential equations. Int. J. Systems Sci. 51 (2020), 4, 643-654. DOI  | MR 4080957
[208] Mazandarani, M., Najariyan, M.: A note on class of linear differential dynamical systems with fuzzy initial condition. Fuzzy Sets Systems 265 (2015), 121-126. DOI  | MR 3310331
[209] Mazandarani, M., Pariz, N., Kamyad, A. V.: Granular differentiability of fuzzy-number-valued functions. IEEE Trans. Fuzzy Systems 26 (2018), 1, 310-323. DOI 
[210] Mikaeilvand, N., Khakrangin, S.: Solving fuzzy partial differential equations by fuzzy two-dimensional differential transform method. Neural Comput. Appl. 21 (2012), 1, S307-S312. DOI 
[211] Min, C., Huang, N. J., Zhang, L. H.: Existence of local and global solutions of fuzzy delay differential inclusions. Adv. Differ. Equations 2014 (2014), Article number: 108. DOI  | MR 3248622
[212] Mirzaee, F., Yari, M. K.: A novel computing three-dimensional differential transform method for solving fuzzy partial differential equations. Ain Shams Engrg. J. 7 (2016), 2, 695-708. DOI 
[213] Mizukoshi, M. T., Barros, L. C., Chalco-Cano, Y., Román-Flores, H., Bassanezi, R. C.: Fuzzy differential equations and the extension principle. Inform. Sci. 177 (2007), 3627-3635. DOI  | MR 2530842
[214] Mizukoshi, M. T., Barros, L. C., Bassanezi, R. C.: Stability of fuzzy dynamic systems. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 17 (2009), 01, 69-83. DOI  | MR 2514521
[215] Mohapatra, D., Chakraverty, S.: Type-2 fuzzy initial value problems under granular differentiability. Math. Computers Simul. 229 (2025), 435-447. MR 4812364
[216] Moghadam, M. M., Jalal, I.: Finite volume methods for fuzzy parabolic equations. J. Math. Computer Sci. 2 (2011), 3, 546-558. DOI 
[217] Molchanyuk, I. V., Plotnikov, A. V.: Necessary and sufficient conditions of optimality in the problems of control with fuzzy parameters. Ukrainian Math. J. 61 (2009), 3, 457-466. DOI  | MR 2562219
[218] Mondal, S. P., Khan, N. A., Razzaq, O. A., Tudu, S., Roy, T. K.: Adaptive strategies for system of fuzzy differential equation: Application of arms race model. J. Math. Computer Sci. 18 (2018), 192-205. DOI 
[219] Mondal, S. P., Roy, T. K.: Solution of second order linear fuzzy ordinary differential equation by Lagrange multiplier method with application in mechanics. Opsearch 54 (2017), 766-798. DOI  | MR 3715947
[220] Mosleh, M.: Fuzzy neural network for solving a system of fuzzy differential equations. Appl. Soft Comput. 13 (2013), 8, 3597-3607. DOI 
[221] Mosleh, M., Otadi, M.: Simulation and evaluation of fuzzy differential equations by fuzzy neural network. Appl. Soft Comput. 12 (2012), 9, 2817-2827. DOI  | MR 2806708
[222] Mosleh, M., Otadi, M.: Minimal solution of fuzzy linear system of differential equations. Neural Comput. Appl. 21 (2012), Suppl. 1, S329-S336. DOI  | MR 3037928
[223] Mosleh, M., Otadi, M.: Approximate solution of fuzzy differential equations under generalized differentiability. Appl. Math. Modell. 39 (2015), 10-11, 3003-3015. DOI  | MR 3339132
[224] Murty, M. S. N., Kumar, G. S.: Three point boundary value problems for third order fuzzy differential equations. J. Chungcheong Math. Soc. 19 (2006), 1, 101-110. DOI 
[225] Nagi, F., Ahmed, S. K., Zularnain, A. T., Nagi, J.: Fuzzy time-optimal controller (FTOC) for second order nonlinear systems. ISA Trans. 50 (2011), 364-375. DOI 
[226] Nasibov, E., Atilgan, C., Berberler, M. E., Nasiboglu, R.: Fuzzy joint points based clustering algorithms for large data sets. Fuzzy Sets Systems 270 (2015), 111-126. DOI  | MR 3328011
[227] Nasiboglu, R., Nasibov, E.: FyzzyGBR - A gradient boosting regression software with fuzzy target values. Software Impacts 14 (2022), 100430. DOI 
[228] Nieto, J. J.: The Cauchy problem for continuous fuzzy differential equations. Fuzzy Sets Systems 102 (1997), 2, 259-262. DOI  | MR 1674955
[229] Nieto, J. J., Khastan, A., Ivaz, K.: Numerical solution of fuzzy differential equations under generalized differentiability. Nonlinear Analysis: Hybrid Systems 3 (2009), 4, 700-707. DOI  | MR 2561685
[230] Nieto, J. J., Rodríguez-López, R.: Bounded solutions for fuzzy differential and integral equations. Chaos Solitons Fractals 27 (2006), 5, 1376-1386. DOI  | MR 2164862
[231] Nieto, J. J., Rodríguez-López, R.: Some results on boundary value problems for fuzzy differential equations with functional dependence. Fuzzy Sets Systems 230 (2013), 92-118. DOI  | MR 3104330
[232] Nieto, J. J., Rodríguez-López, R., Franko, D.: Linear first-order fuzzy differential equations. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 14 (2006), 06, 687-709. DOI  | MR 2289145
[233] Nieto, J. J., Rodríguez-López, R., Villanueva-Pesqueira, M.: Exact solution to the periodic boundary value problem for a first-order linear fuzzy differential equation with impulses. Fuzzy Optim. Decision Making 10 (2011), 323-339. DOI  | MR 2847357
[234] Oberguggenberger, M., Pittschmann, S.: Differential equations with fuzzy parameters. Math. Computer Modell. Dynamical Systems: Methods Tools Appl. Engrg. Related Sci. 5 (1999), 3, 181-202. DOI 
[235] Omar, A. A., Hasan, Y. A.: Numerical solution of fuzzy differential equations and the dependency problem. Appl. Math. Comput. 219 (2012), 3, 1263-1272. DOI  | MR 2981319
[236] O'Regan, D., Lakshmikantham, V., Nieto, J. J.: Initial and boundary value problems for fuzzy differential equations. Nonlinear Anal. 54 (2003), 405-415. DOI  | MR 1978418
[237] Palligkinis, S. C., Papageorgiou, G., Famelis, I. T.: Runge-Kutta methods for fuzzy differential equations. Appl. Math. Comput. 209, 1, 97-105. DOI  | MR 2493289
[238] Park, J. Y., Han, H. K.: Fuzzy differential equations. Fuzzy Sets Systems 110 (2000), 1, 69-77. DOI  | MR 1748109
[239] Park, J. Y., Jeong, J. U.: On random fuzzy functional differential equations. Fuzzy Sets Systems 223 (2013), 89-99. DOI  | MR 3054143
[240] Pearson, D. W.: A property of linear fuzzy differential equations. Appl. Math. Lett. 10 (1997), 3, 99-103. DOI  | MR 1457648
[241] Pedro, F. S., Barros, L. C., Esmi, E.: Population growth model via interactive fuzzy differential equation. Inform. Sci. 481 (2019), 160-173. DOI  | MR 3895024
[242] Pedrycz, W.: Why triangular membership functions?. Fuzzy Sets Systems 64 (1994), 1, 21-30. DOI  | MR 1281283
[243] Perfilieva, I., Meyer, H., Baets, B., Plšková, D.: Cauchy problem with fuzzy initial condition and its approximate solution with the help of fuzzy transform. In: IEEE World Congress on Computational Intelligence (WCCI 2008), 6 p., 2008. DOI  | MR 2218243
[244] Perfilieva, I., Kreinovich, V.: Fuzzy transforms of higher order approximate derivatives: A theorem. Fuzzy Sets Systems 180 (2011), 1, 55-68. DOI  | MR 2822356
[245] Plotnikov, A. V.: Necessary optimality conditions for a nonlinear problem of control of trajectory bundles. Cybernetics Systems Analysis 36 (2000), 5, 730-733. DOI  | MR 1839626
[246] Plotnikov, A. V., Komleva, T. A., Skripnik, N. V.: Existence of basic solutions of first order linear homogeneous set-valued differential equations. Matematychni Studii 61 (2024), 1, 61-78. DOI  | MR 4729949
[247] Plotnikov, A. V., Skripnik, N. V.: An existence and uniqueness theorem to the Cauchy problem for generalised set differential equations. Dynamics Continuous Discrete Impulsive Systems, Series A: Math. Anal. 20 (2013), 433-445. DOI  | MR 3136526
[248] Prakash, P., Priya, G. Sudha, Kim, J.-H.: Third-order three-point fuzzy boundary value problems. Nonlinear Analysis: Hybrid Systems 3 (2009), 3, 323-333. DOI  | MR 2535921
[249] Puri, M. L., Ralescu, D. A.: Differentials of fuzzy functions. J. Math. Anal. Appl. 91 (1983), 552-558. DOI  | MR 0690888
[250] Qayyum, M., Tahir, A., Saeed, S. T., Afzal, S., Akgül, A., Hassani, M. K.: Dual solution of thin film flow of fuzzified MHD pseudo-plastic fluid: numerical investigation in uncertain environment. Appl. Math. Sci. Engrg. 32 (2024), 1, 2421486. DOI  | MR 4817744
[251] Qiu, D., Dong, R., Lu, C., Mu, C.: On the stability of solutions of fuzzy differential equations in the quotient space of fuzzy numbers. J. Intell. Fuzzy Systems 31 (2016), 1, 45-54. DOI  | MR 3347782
[252] Qiu, D., Zhang, W., Lu, C.: On fuzzy differential equations in the quotient space of fuzzy numbers. Fuzzy Sets Systems 295 (2016), 72-98. DOI  | MR 3488878
[253] Qiu, D., Zhang, C., Zhang, W., Mu, C.: Basic theorems for fuzzy differential equations in the quotient space of fuzzy numbers. Advances Difference Equations (2014) 1-22. DOI  | MR 3347782
[254] Rabiei, F., Ismail, F., Ahmadian, A., Salahshour, S.: Numerical solution of second‐order fuzzy differential equation using improved Runge-Kutta Nystrom method. Math. Problems Engrg. 2013 (2013), 1, 803462. DOI  | MR 3062692
[255] Rabiei, F., Hamid, F. Abd, Rashidi, M. M., Ismail, F.: Numerical simulation of fuzzy differential equations using general linear method and B-series. Advances Mechanic. Engrg. 9 (2017), 9, 1687814017715419. DOI 
[256] Rahman, N. A. A., Ahmad, M. Z.: Applications of the fuzzy Sumudu transform for the solution of first order fuzzy differential equations. Entropy 17 (2015), 7, 4582-4601. DOI 
[257] Ren, W., Yang, Z., Sun, X., Qi, M.: Hyers-Ulam stability of Hermite fuzzy differential equations and fuzzy Mellin transform. J. Intell. Fuzzy Systems 35 (2018), 3, 3721-3731. DOI 
[258] Rodríguez-López, R.: On the existence of solutions to periodic boundary value problems for fuzzy linear differential equations. Fuzzy Sets Systems 219 (2013), 1-6. DOI  | MR 3035731
[259] Rodríguez-López, R.: Comparison results for fuzzy differential equations. Inform. Sci. 178 (2008), 1756-1779. DOI  | MR 2406997
[260] Rodríguez-López, R.: Monotone method for fuzzy differential equations. Fuzzy Sets Systems 159 (2008), 16, 2047-2076. DOI  | MR 2431800
[261] Roussel, M. R.: The use of delay differential equations in chemical kinetics. J. Physical Chemistry 100 (1996), 20, 8323-8330. DOI 
[262] Salahshour, S., Haghi, E.: Solving fuzzy heat equation by fuzzy Laplace transforms. Commun. Computer Inform. Sci. 81 (2010), 512-521. DOI 
[263] Salamat, N., Mustahsan, M., Missen, M. M. Saad: Switching point solution of second-order fuzzy differential equations using differential transformation method. Mathematics 7 (2019), 3, 231. DOI 
[264] Salgado, S. A. B., Esmi, E., Sanchez, D. E., Barros, L. C. de: Solving interactive fuzzy initial value problem via fuzzy Laplace transform. Computat. Appl. Math. 40 (2021), 1-14. DOI  | MR 4204574
[265] Salgado, S. A. B., Barros, L. C. de, Esmi, E., Sanchez, D. Eduardo: Solution of a fuzzy differential equation with interactivity via Laplace transform. J. Intell. Fuzzy Systems 37 (2019), 2, 2495-2501. DOI 
[266] Sanchez, D. E., Barros, L. C., Esmi, E.: On interactive fuzzy boundary value problems. Fuzzy Sets Systems 358 (2019), 84-96. DOI  | MR 3913069
[267] Sanchez, D. E., Wasques, V. F., Esmi, E., Barros, L. C. de: Solution to the Bessel differential equation with interactive fuzzy boundary conditions. Comput. Appl. Math. 41 (2022), 1-12. DOI  | MR 4347606
[268] Pedro, F. Santo, Barros, L. C. de, Esmi, E.: Population growth model via interactive fuzzy differential equation. Inform. Sci. 481 (2019), 160-173. DOI  | MR 3895024
[269] Sarvestani, M. S., Chehlabi, M.: Solutions of periodic boundary value problems for first-order linear fuzzy differential equations under new conditions. Comput. Appl. Math. 43 (2024), 5, 299. DOI  | MR 4761912
[270] Saqib, M., Akram, M., Bashir, S., Allahviranloo, T.: A Runge-Kutta numerical method to approximate the solution of bipolar fuzzy initial value problems. Comput. Appl. Math. 40 (2021), 4, 151. DOI  | MR 4263165
[271] Seikkala, S.: On the fuzzy initial value problem. Fuzzy Sets Systems 24 (1987), 3, 319-330. DOI  | MR 0919059
[272] Shang, D., Guo, X.: Adams predictor-corrector systems for solving fuzzy differential equations. Math. Problems Engrg. 2013 (2013), 1, 312328. DOI  | MR 3070722
[273] Shaw, A. K., Rahaman, M., Mondal, S. P., Chatterjee, B., Alam, S.: Solution of a mining equipment maintenance system model in imprecise environment. Int. J. Oper. Res. 51 (2024), 4, 562-598. DOI  | MR 4842080
[274] Shen, Y.: First-order linear fuzzy differential equations on the space of linearly correlated fuzzy numbers. Fuzzy Sets Systems 429 (2022), 136-168. DOI  | MR 4363606
[275] Shen, Y.: Solutions to the fuzzy heat equation and the fuzzy wave equation in the space of strongly linearly correlated fuzzy numbers. Inform. Sci. 718 (2025), 122423. DOI 
[276] Shen, Y., Chen, W., Wang, J.: Fuzzy Laplace transform method for the Ulam stability of linear fuzzy differential equations of first order with constant coefficients. J. Intell. Fuzzy Systems 32(1) (2017) 671-680. DOI  | MR 3590367
[277] Shen, Y., Wang, F.: A fixed point approach to the Ulam stability of fuzzy differential equations under generalized differentiability. J. Intell. Fuzzy Systems 30 (2016), 6, 3253-3260. DOI  | MR 3176115
[278] Shen, Y., Yan, C.: A new approach for fuzzy gyronorms on gyrogroups and its fuzzy topologies. Kybernetika 60 (2024), 1, 19-37. DOI  | MR 4730698
[279] Shi, Y., Yao, W.: On generalizations of fuzzy metric spaces. Kybernetika 59 (2023), 6, 880-903. DOI  | MR 4712967
[280] Soma, N., Kumar, G. S., Agarwal, R. P., Wang, C., Murty, M. S. N.: Existence and uniqueness of solutions for fuzzy boundary value problems under granular differentiability. Fuzzy Inform. Engrg. 15 (2023), 3, 291-312. DOI 
[281] Song, S., Wu, C.: Existence and uniqueness of solutions to Cauchy problem of fuzzy differential equations. Fuzzy Sets Systems 110 (2000), 1, 55-67. DOI  | MR 1748108
[282] Song, S., Wu, C., Xue, X.: Existence and uniqueness of Cauchy problem for fuzzy differential equations under dissipative conditions. Computers Math. Appl. 51 (2006), 9-10, 1483-1492. DOI  | MR 2237645
[283] Stefanini, L.: A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets Systems 161 (2010), 11, 1564-1584. DOI  | MR 2608262 | Zbl 1188.26019
[284] Štěpnička, M., Valášek, R.: Numerical solution of partial differential equations with help of fuzzy transform. In: Proc. 14th IEEE International Conference on Fuzzy Systems (FUZZ'05), 2005, pp. 1104-1109. DOI 
[285] Sun, X., Yang, Z.: A Mellin transform method for solving fuzzy differential equations. Adv. Differ. Equations 2016 (2016), Article number: 296. DOI  | MR 3575779
[286] Tapaswini, S., Chakraverty, S.: A new approach to fuzzy initial value problem by improved Euler method. Fuzzy Inform. Engrg. 4 (2012), 3, 293-312. DOI  | MR 2981190
[287] Tapaswini, S., Chakraverty, S.: Numerical solution of fuzzy differential equations using orthogonal polynomials. Int. J. Comput. Sci. Math. 10 (2019), 1, 32-45. DOI  | MR 3922051
[288] Tri, P. V., Hoa, N. V., Phu, N. D.: Sheaf fuzzy problems for functional differential equations. Adv. Differ. Equations 2014 (2014), Article number: 156. DOI  | MR 3224018
[289] Villamizar-Roa, E. J., Angulo-Castillo, V., Chalco-Cano, Y.: Existence of solutions to fuzzy differential equations with generalized Hukuhara derivative via contractive-like mapping principles. Fuzzy Sets Systems 265 (2015), 24-38. DOI  | MR 3310325
[290] Vorobiev, D., Seikkala, S.: Towards the theory of fuzzy differential equations. Fuzzy Sets Systems 125 (2002), 231-237. DOI  | MR 1880339
[291] Vu, H.: Random fuzzy differential equations with impulses. Complexity 2017 (2017), 1, 4056016. DOI  | MR 3667715
[292] Vu, H., Hoa, N. V.: On impulsive fuzzy functional differential equations. Iranian J. Fuzzy Systems 13 (2016), 4, 79-94. DOI  | MR 3561637
[293] Vu, H., Dong, L. S., Phung, N. N.: Application of contractive-like mapping principles to impulsive fuzzy functional differential equation. J. Intell. Fuzzy Systems 33 (2017), 2, 753-759. DOI  | MR 3561637
[294] Wang, H.: Monotone iterative method for boundary value problems of fuzzy differential equations. J. Intell. Fuzzy Systems 30 (2016), 2, 831-843. DOI 
[295] Wang, H.: Two-point boundary value problems for first-order nonlinear fuzzy differential equation. J. Intell. Fuzzy Systems 30 (2016), 6, 3335-3347. DOI 
[296] Wang, H.: Existence of solutions to boundary value problem for second order fuzzy differential equations. J. Intell. Fuzzy Systems 36 (2019), 1, 829-838. DOI 
[297] Wang, H.: Boundary value problems for a class of first-order fuzzy delay differential equations. Mathematics 8 (2020), 5, 683. DOI 
[298] Wasques, V. F.: A numerical approach to fuzzy partial differential equations with interactive fuzzy values: application to the heat equation. Comput. Appl. Math. 43 (2024), 6, Article 331. DOI  | MR 4773246
[299] Wu, C., Song, S., Lee, E. S.: Approximate solutions, existence, and uniqueness of the Cauchy problem of fuzzy differential equations. J. Math. Anal. Appl. 202 (1996), 2, 629-644. DOI  | MR 1406252
[300] Xiaoping, X., Yongqiang, F.: On the structure of solutions for fuzzy initial value problem. Fuzzy Sets Systems 157 (2006), 2, 212-229. DOI  | MR 2186224
[301] Xu, J., Liao, Z., Hu, Z.: A class of linear differential dynamical systems with fuzzy initial condition. Fuzzy Sets Systems 158 (2007), 21, 2339-2358. DOI  | MR 2360320
[302] Xu, J., Liao, Z., Nieto, J. J.: A class of linear differential dynamical systems with fuzzy matrices. J. Math. Anal. Appl. 368 (2010), 54-68. DOI  | MR 2609258
[303] Xue, X., Fu, Y.: Caratheodory solutions of fuzzy differential equations. Fuzzy Sets Systems 125 (2002), 2, 239-243. DOI  | MR 1880340
[304] Yang, H., Chen, Y.: Lyapunov stability of fuzzy dynamical systems based on fuzzy-number-valued function granular differentiability. Commun. Nonlinear Sci. Numer. Simul. 133 (2024), 107984. DOI  | MR 4721512
[305] Yang, H., Wang, F., Gong, Z.: Solving the BVP to a class of second-order linear fuzzy differential equations under granular differentiability concept. J. Intell. Fuzzy Systems 42 (2022), 6, 5483-5499. DOI  | MR 4363607
[306] Yang, H., Wang, F., Wang, L.: Solving the homogeneous BVP of second order linear FDEs with fuzzy parameters under granular differentiability concept. J. Intell. Fuzzy Systems 44 (2023), 4, 6327-6340. DOI 
[307] Yang, H., Wu, Y.: The BVP of a class of second order linear fuzzy differential equations is solved by Green function method under the concept of granular differentiability. Comput. Appl. Math. 43 (2024), 5, 293. DOI  | MR 4761422
[308] Zadeh, L. A.: Fuzzy sets. Inform. Control 8 (1965), 338-353. MR 0219427 | Zbl 0942.00007
[309] Zarei, H., Kamyad, A. V., Heydari, A. A.: Fuzzy modeling and control of HIV infection. Comput. Math. Methods Medicine (2012), Article ID 893474. DOI  | MR 2901049
[310] Zhang, D., Feng, W., Zhao, Y., Qiu, J.: Global existence of solutions for fuzzy second-order differential equations under generalized H-differentiability. Comput. Math. Appl. 60 (2010), 6, 1548-1556. DOI  | MR 2679123
[311] Zhao, H., Jia, L. Y., Chen, G. X.: Convex (L,M)-fuzzy remote neighborhood operators. Kybernetika 60 (2024), 2, 150-171. DOI  | MR 4757767
[312] Zhao, Y., Zhu, Y.: Fuzzy optimal control of linear quadratic models. Comput. Math. Appl. 60 (2010), 67-73. DOI  | MR 2651884
[313] Zhu, Y.: Stability analysis of fuzzy linear differential equations. Fuzzy Optim. Decision Making 9 (2010), 169-186. DOI  | MR 2643960
Partner of
EuDML logo