Previous |  Up |  Next

Article

Keywords:
fuzzy implications; the law of importation; the law of contra-positive symmetry; $(S;N)$-implications; $R$-implications
Summary:
It is well known that monotonicity has been an important defining criterion for fuzzy logic connectives, such as fuzzy negations, t-norms, t-conorms and fuzzy implications. Also, a stronger version of monotonicity, namely strict monotonicity, establishes some significant representation theorems of continuous fuzzy negations, continuous t-norms and continuous t-conorms. In this work, we propose the strict monotonicity for fuzzy implications and investigate some necessary conditions on fuzzy implications to fulfill the same. Also, the relationship between the basic properties, functional equations of fuzzy implications and the strict monotonicity will be investigated. Further, we examine the strict monotonicity for fuzzy implications that do come from different families of fuzzy implications and show that the strict monotonicity is a necessary condition for fuzzy polynomial implications, fuzzy rational implications and some subclasses of $(S,N)$ and $f$-generated fuzzy implications.
References:
[1] Baczyński, M., Beliakov, G., Bustince, H., Pradera, A.: Advances in Fuzzy Implication Functions. Studies in Fuzziness and Soft Computing 300, Springer London, Limited, 2013. DOI 
[2] Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing 231, Springer-Verlag, Berlin Heidelberg, 2008. MR 2428086 | Zbl 1293.03012
[3] Baczyński, M., Jayaram, B., Mesiar, R.: Fuzzy implications: alpha migrativity and generalised laws of importation. Inform. Sci. 531 (2020), 87-96. DOI  | MR 4097225
[4] Balasubramaniam, J.: Contrapositive symmetrisation of fuzzy implications - Revisited. Fuzzy Sets Systems 157 (2006), 17, 2291-2310. DOI  | MR 2251837
[5] Balasubramaniam, J.: Yager's new class of implications $J_{f}$ and some classical tautologies. Inform. Sci. 177 (2007), 3, 930-946. DOI  | MR 2288674
[6] Bézivin, J. P., Tomás, M. S.: On the determination of strict t-norms on some diagonal segments. Aequation. Math. 25 (1993), 1, 100-113. DOI  | MR 1212389
[7] Budinčević, M., Kurilić, M.: A family of strict and discontinuous triangular norms. Fuzzy Sets Systems 95 (1998), 3, 381-384. DOI  | MR 1609804
[8] Dimuro, G. P., Bedregal, B.: Archimedean overlap functions: The ordinal sum and the cancellation, idempotency and limiting properties. Fuzzy Sets Systems 252 (2014), 39-54, theme: Aggregation Functions. DOI  | MR 3239175
[9] Drewniak, J., Matusiewicz, Z.: Fuzzy equations max with conditionally cancellative operations. Inform. Sci. 206 (2012), 18-29. DOI  | MR 2930162
[10] Fernandez-Peralta, R., Massanet, S., Mesiarová-Zemánková, A., Mir, A.: Determination of the continuous completions of conditionally cancellative pre-t-norms associated with the characterization of (S,N)-implications: Part I. Fuzzy Sets Systems 468 (2023), 108614. DOI  | MR 4605378
[11] Fernandez-Peralta, R., Massanet, S., Mesiarová-Zemánková, A., Mir, A.: Determination of the continuous completions of conditionally cancellative pre-t-norms associated with the characterization of (S,N)-implications: Part II. Fuzzy Sets Systems 471 (2023), 108675. DOI  | MR 4632043
[12] Fodor, J. C.: Contrapositive symmetry of fuzzy implications. Fuzzy Sets Systems 69 (1995), 2, 141-156. DOI  | MR 1317882
[13] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. First Edition. Encyclopedia of Mathematics and its Applications, Cambridge University Press, New York 2009. MR 2538324
[14] Hliněná, D., Kalina, M., Král', P.: Generated implications revisited. In: Advances Computational Intelligence (S. Greco, B. Bouchon-Meunier, G. Coletti, M. Fedrizzi, B. Matarazzo, and R. Yager, eds.), Communications in Computer and Information Science 298, Springer, Berlin - Heidelberg 2012, pp. 345-354.
[15] Jayaram, B.: On the law of importation $a \rightarrow (b \rightarrow c)) \equiv (a \wedge b) \rightarrow c$ in fuzzy logic. IEEE Trans. Fuzzy Systems 16 (2008), 1, 130-144. DOI 
[16] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. In: Trends in Logic 8, Kluwer Academic Publishers, Dordrecht 2000. MR 1790096 | Zbl 1087.20041
[17] Klement, E., Mesiar, R.: Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms. Elsevier Science, 2005. MR 2165231
[18] Maes, K. C., Mesiarová-Zemánková, A.: Cancellativity properties for t-norms and t-subnorms. Inform. Sci. 179 (2009), 9, 1221-1233. DOI  | MR 2501780
[19] Mandal, S., Jayaram, B.: SISO fuzzy relational inference systems based on fuzzy implications are universal approximators. Fuzzy Sets Systems 277 (2015), 1-21, theme: Fuzzy Systems. DOI  | MR 3373255
[20] Mandal, S., Jayaram, B.: Monotonicity of SISO fuzzy relational inference with an implicative rule base. IEEE Trans. Fuzzy Systems 24 (2016), 6, 1475-1487. DOI 
[21] Mas, M., Monserrat, M., Torrens, J.: The law of importation for discrete implications. Inform. Sci. 179 (2009), 24, 4208-4218. DOI  | MR 2722378
[22] Massanet, S., Mir, A., Riera, J. V., Ruiz-Aguilera, D.: Fuzzy implication functions with a specific expression: The polynomial case. Fuzzy Sets Systems 451 (2022), 176-195. DOI  | MR 4516374
[23] Massanet, S., Riera, J. V., Ruiz-Aguilera, D.: On fuzzy polynomial implications. In: Processing and Management of Uncertainty in Knowledge-Based Systems - 15th International Conference (A. Laurent, O. Strauss, B. Bouchon-Meunier, and R. R. Yager, eds.), Information IPMU 2014, Montpellier 2014, Proceedings, Part I, Vol. 442 of Communications in Computer and Information Science, Springer, 2014, pp. 138-147. DOI  | MR 3587476
[24] Massanet, S., Riera, J. V., Ruiz-Aguilera, D.: On (OP)-polynomial implications. In: 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (J.\.M. Alonso, H. Bustince, and M. Z. Reformat, eds.), (IFSAEUSFLAT-15), Gijón 2015, Atlantis Press, 2015. DOI  | MR 3356601
[25] Massanet, S., Riera, J. V., Ruiz-Aguilera, D.: On rational fuzzy implication functions. In: 2016 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016, Vancouver, IEEE, pp. 272-279. DOI 
[26] Massanet, S., Torrens, J.: The law of importation versus the exchange principle on fuzzy implications. Fuzzy Sets Systems 168 (2011), 1, 47-69. DOI  | MR 2772620
[27] Massanet, S., Torrens, J.: On a new class of fuzzy implications: h-implications and generalizations. Inform. Sci. 181 (2011), 11, 2111-2127. DOI  | MR 2781774
[28] Massanet, S., Torrens, J.: Characterization of fuzzy implication functions with a continuous natural negation satisfying the law of importation with a fixed t-norm. IEEE Trans. Fuzzy Systems 25 (2017), 1, 100-113. DOI 
[29] Mesiarová, A.: Approximation of k-lipschitz t-norms by strict and nilpotent k-lipschitz t-norms. Int. J. General Systems 36 (2007), 2, 205-218. DOI  | MR 2294542
[30] Mesiarová-Zemánková, A.: Continuous additive generators of continuous, conditionally cancellative triangular subnorms. Inform. Sci. 339 (2016), 53-63. DOI  | MR 3456785
[31] Nguyen, H. T., Kreinovich, V., Wojciechowski, P.: Strict Archimedean t-norms and t-conorms as universal approximators. Int. J. Approx. Reason. 18 (1998), 3, 239-249. DOI  | MR 1661123
[32] Ouyang, Y., Fang, J., Li, J.: A conditionally cancellative left-continuous t-norm is not necessarily continuous. Fuzzy Sets Systems 157 (2006), 17, 2328-2332. DOI  | MR 2251839
[33] Petrík, M.: Convex combinations of strict t-norms. Soft Computing 14 (2010), 10 1053-1057. DOI 
[34] Petrík, M., Sarkoci, P.: Continuous weakly cancellative triangular subnorms: I. Their webgeometric properties. Fuzzy Sets Systems 332 (2018), 93-110, theme: Aggregation and Operators. DOI  | MR 3732252
[35] Vemuri, N. R., Jayaram, B.: Homomorphisms on the monoid of fuzzy implications and the iterative functional equation $I(x, I(x,y))=I(x, y)$. Inform. Sci. 298 (2015), 1-21. DOI  | MR 3298330
[36] Wu, H., She, Y.: Cancellation laws for triangular norms on product lattices. Fuzzy Sets Systems 473 (2023), 108730. DOI  | MR 4649325
[37] Yager, R. R.: On some new classes of implication operators and their role in approximate reasoning. Inform. Sci. 167 (2004), 1-4, 193-216. DOI  | MR 2103181
[38] Zhou, H.: Characterizations of fuzzy implications generated by continuous multiplicative generators of t-norms. IEEE Trans. Fuzzy Systems 29 (2021), 10, 2988-3002. DOI 
Partner of
EuDML logo