[1] Baczyński, M., Beliakov, G., Bustince, H., Pradera, A.:
Advances in Fuzzy Implication Functions. Studies in Fuzziness and Soft Computing 300, Springer London, Limited, 2013.
DOI
[2] Baczyński, M., Jayaram, B.:
Fuzzy Implications. Studies in Fuzziness and Soft Computing 231, Springer-Verlag, Berlin Heidelberg, 2008.
MR 2428086 |
Zbl 1293.03012
[3] Baczyński, M., Jayaram, B., Mesiar, R.:
Fuzzy implications: alpha migrativity and generalised laws of importation. Inform. Sci. 531 (2020), 87-96.
DOI |
MR 4097225
[4] Balasubramaniam, J.:
Contrapositive symmetrisation of fuzzy implications - Revisited. Fuzzy Sets Systems 157 (2006), 17, 2291-2310.
DOI |
MR 2251837
[5] Balasubramaniam, J.:
Yager's new class of implications $J_{f}$ and some classical tautologies. Inform. Sci. 177 (2007), 3, 930-946.
DOI |
MR 2288674
[6] Bézivin, J. P., Tomás, M. S.:
On the determination of strict t-norms on some diagonal segments. Aequation. Math. 25 (1993), 1, 100-113.
DOI |
MR 1212389
[7] Budinčević, M., Kurilić, M.:
A family of strict and discontinuous triangular norms. Fuzzy Sets Systems 95 (1998), 3, 381-384.
DOI |
MR 1609804
[8] Dimuro, G. P., Bedregal, B.:
Archimedean overlap functions: The ordinal sum and the cancellation, idempotency and limiting properties. Fuzzy Sets Systems 252 (2014), 39-54, theme: Aggregation Functions.
DOI |
MR 3239175
[9] Drewniak, J., Matusiewicz, Z.:
Fuzzy equations max with conditionally cancellative operations. Inform. Sci. 206 (2012), 18-29.
DOI |
MR 2930162
[10] Fernandez-Peralta, R., Massanet, S., Mesiarová-Zemánková, A., Mir, A.:
Determination of the continuous completions of conditionally cancellative pre-t-norms associated with the characterization of (S,N)-implications: Part I. Fuzzy Sets Systems 468 (2023), 108614.
DOI |
MR 4605378
[11] Fernandez-Peralta, R., Massanet, S., Mesiarová-Zemánková, A., Mir, A.:
Determination of the continuous completions of conditionally cancellative pre-t-norms associated with the characterization of (S,N)-implications: Part II. Fuzzy Sets Systems 471 (2023), 108675.
DOI |
MR 4632043
[12] Fodor, J. C.:
Contrapositive symmetry of fuzzy implications. Fuzzy Sets Systems 69 (1995), 2, 141-156.
DOI |
MR 1317882
[13] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.:
Aggregation Functions. First Edition. Encyclopedia of Mathematics and its Applications, Cambridge University Press, New York 2009.
MR 2538324
[14] Hliněná, D., Kalina, M., Král', P.: Generated implications revisited. In: Advances Computational Intelligence (S. Greco, B. Bouchon-Meunier, G. Coletti, M. Fedrizzi, B. Matarazzo, and R. Yager, eds.), Communications in Computer and Information Science 298, Springer, Berlin - Heidelberg 2012, pp. 345-354.
[15] Jayaram, B.:
On the law of importation $a \rightarrow (b \rightarrow c)) \equiv (a \wedge b) \rightarrow c$ in fuzzy logic. IEEE Trans. Fuzzy Systems 16 (2008), 1, 130-144.
DOI
[16] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. In: Trends in Logic 8, Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096 |
Zbl 1087.20041
[17] Klement, E., Mesiar, R.:
Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms. Elsevier Science, 2005.
MR 2165231
[18] Maes, K. C., Mesiarová-Zemánková, A.:
Cancellativity properties for t-norms and t-subnorms. Inform. Sci. 179 (2009), 9, 1221-1233.
DOI |
MR 2501780
[19] Mandal, S., Jayaram, B.:
SISO fuzzy relational inference systems based on fuzzy implications are universal approximators. Fuzzy Sets Systems 277 (2015), 1-21, theme: Fuzzy Systems.
DOI |
MR 3373255
[20] Mandal, S., Jayaram, B.:
Monotonicity of SISO fuzzy relational inference with an implicative rule base. IEEE Trans. Fuzzy Systems 24 (2016), 6, 1475-1487.
DOI
[21] Mas, M., Monserrat, M., Torrens, J.:
The law of importation for discrete implications. Inform. Sci. 179 (2009), 24, 4208-4218.
DOI |
MR 2722378
[22] Massanet, S., Mir, A., Riera, J. V., Ruiz-Aguilera, D.:
Fuzzy implication functions with a specific expression: The polynomial case. Fuzzy Sets Systems 451 (2022), 176-195.
DOI |
MR 4516374
[23] Massanet, S., Riera, J. V., Ruiz-Aguilera, D.:
On fuzzy polynomial implications. In: Processing and Management of Uncertainty in Knowledge-Based Systems - 15th International Conference (A. Laurent, O. Strauss, B. Bouchon-Meunier, and R. R. Yager, eds.), Information IPMU 2014, Montpellier 2014, Proceedings, Part I, Vol. 442 of Communications in Computer and Information Science, Springer, 2014, pp. 138-147.
DOI |
MR 3587476
[24] Massanet, S., Riera, J. V., Ruiz-Aguilera, D.:
On (OP)-polynomial implications. In: 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (J.\.M. Alonso, H. Bustince, and M. Z. Reformat, eds.), (IFSAEUSFLAT-15), Gijón 2015, Atlantis Press, 2015.
DOI |
MR 3356601
[25] Massanet, S., Riera, J. V., Ruiz-Aguilera, D.:
On rational fuzzy implication functions. In: 2016 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016, Vancouver, IEEE, pp. 272-279.
DOI
[26] Massanet, S., Torrens, J.:
The law of importation versus the exchange principle on fuzzy implications. Fuzzy Sets Systems 168 (2011), 1, 47-69.
DOI |
MR 2772620
[27] Massanet, S., Torrens, J.:
On a new class of fuzzy implications: h-implications and generalizations. Inform. Sci. 181 (2011), 11, 2111-2127.
DOI |
MR 2781774
[28] Massanet, S., Torrens, J.:
Characterization of fuzzy implication functions with a continuous natural negation satisfying the law of importation with a fixed t-norm. IEEE Trans. Fuzzy Systems 25 (2017), 1, 100-113.
DOI
[29] Mesiarová, A.:
Approximation of k-lipschitz t-norms by strict and nilpotent k-lipschitz t-norms. Int. J. General Systems 36 (2007), 2, 205-218.
DOI |
MR 2294542
[30] Mesiarová-Zemánková, A.:
Continuous additive generators of continuous, conditionally cancellative triangular subnorms. Inform. Sci. 339 (2016), 53-63.
DOI |
MR 3456785
[31] Nguyen, H. T., Kreinovich, V., Wojciechowski, P.:
Strict Archimedean t-norms and t-conorms as universal approximators. Int. J. Approx. Reason. 18 (1998), 3, 239-249.
DOI |
MR 1661123
[32] Ouyang, Y., Fang, J., Li, J.:
A conditionally cancellative left-continuous t-norm is not necessarily continuous. Fuzzy Sets Systems 157 (2006), 17, 2328-2332.
DOI |
MR 2251839
[33] Petrík, M.:
Convex combinations of strict t-norms. Soft Computing 14 (2010), 10 1053-1057.
DOI
[34] Petrík, M., Sarkoci, P.:
Continuous weakly cancellative triangular subnorms: I. Their webgeometric properties. Fuzzy Sets Systems 332 (2018), 93-110, theme: Aggregation and Operators.
DOI |
MR 3732252
[35] Vemuri, N. R., Jayaram, B.:
Homomorphisms on the monoid of fuzzy implications and the iterative functional equation $I(x, I(x,y))=I(x, y)$. Inform. Sci. 298 (2015), 1-21.
DOI |
MR 3298330
[36] Wu, H., She, Y.:
Cancellation laws for triangular norms on product lattices. Fuzzy Sets Systems 473 (2023), 108730.
DOI |
MR 4649325
[37] Yager, R. R.:
On some new classes of implication operators and their role in approximate reasoning. Inform. Sci. 167 (2004), 1-4, 193-216.
DOI |
MR 2103181
[38] Zhou, H.:
Characterizations of fuzzy implications generated by continuous multiplicative generators of t-norms. IEEE Trans. Fuzzy Systems 29 (2021), 10, 2988-3002.
DOI