[1] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.:
Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Machine Learn. 3 (2011), 1, 1-122.
DOI 10.1561/2200000016
[2] Bullo, F., Cortés, J., Martinez, S.:
Distributed control of robotic networks: a mathematical approach to motion coordination algorithms. Princeton University Press, Princeton 2009.
MR 2524493
[3] Chen, Y. Q., Gao, Q., Wei, Y. H., Wang, Y.:
Study on fractional order gradient methods. Appl. Math. Comput. 314 (2017), 310-321.
DOI |
MR 3683875
[4] Cheng, S. S., Liang, S.:
Distributed optimization for multi-agent system over unbalanced graphs with linear convergence rate. Kybernetika 56 (2020), 3, 559-577.
DOI |
MR 4131743
[5] Cheng, S. S., Liang, S., Fan, Y.:
Distributed solving Sylvester equations with fractional order dynamics. Control Theory Technol. 19 (2021), 2, 249-259.
DOI |
MR 4264963
[6] Ding, D. R., Han, Q. L., Ge, X. H.:
Distributed filtering of networked dynamic systems with non-gaussian noises over sensor networks: a survey. Kybernetika 56 (2020), 1, 5-34.
MR 4091782
[7] Gharesifard, B., Cortés, J.:
Distributed continuous-time convex optimization on weight-balanced digraphs. IEEE Trans. Automat. Control 59 (2014), 3, 781-786.
DOI |
MR 3188487
[8] Hong, X. L., Wei, Y. H., Zhou, S. Y., Yue, D. D.:
Nabla fractional distributed optimization algorithms over undirected/directed graphs. J. Franklin Inst. 361 (2024), 3, 1436-1454.
DOI |
MR 4689320
[9] Huang, J. Y., Zhou, S. Y., Tu, H., Yao, Y. H., Liu, Q. S.:
Distributed optimization algorithm for multi-robot formation with virtual reference center. IEEE/CAA J. Automat. Sinica 9 (2022), 4, 732-734.
DOI
[10] Humblet, P.:
A distributed algorithm for minimum weight directed spanning trees. IEEE Trans. Commun. 31 (1983), 6, 756-762.
DOI
[11] Kia, S. S., Cortés, J., Martínez, S.:
Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication. Automatica 55 (2015), 254-264.
DOI |
MR 3336675
[12] Li, Z. H., Ding, Z. T., Sun, J. Y., Li, Z. K.:
Distributed adaptive convex optimization on directed graphs via continuous-time algorithms. IEEE Trans. Automat. Control 63 (2018), 5, 1434-1441.
DOI |
MR 3800537
[13] Liang, S., Wang, L. Y., Yin, G.:
Fractional differential equation approach for convex optimization with convergence rate analysis. Optimiz. Lett. 45 (2019), 9, 145-155.
MR 4055308
[14] Lin, P., Ren, W., Farrell, J. A.:
Distributed continuous-time optimization: Nonuniform gradient gains, finite-time convergence, and convex constraint set. IEEE Trans. Automat. Control 62 (2017), 5, 2239-2253.
DOI |
MR 3641443
[15] Liu, Q. S., Yang, S. F., Hong, Y. G.:
Constrained consensus algorithms with fixed step size for distributed convex optimization over multiagent networks. IEEE Trans. Automat. Control 62 (2017), 8, 4259-4265.
DOI |
MR 3684371
[16] Molzahn, D. K., Dörfler, F., Sandberg, H., Low, S. H., Chakrabarti, S., Baldick, R., Lavaei, J.:
A survey of distributed optimization and control algorithms for electric power systems. IEEE Trans. Smart Grid 8 (2017), 6, 2941-2962.
DOI
[17] Nedić, A., Ozdaglar, A.:
Distributed subgradient methods for multi-agent optimization. IEEE Trans. Automat. Control 54 (2009), 1, 48-61.
DOI |
MR 2478070
[18] Ni, W., Wang, X. L.:
Averaging approach to distributed convex optimization for continuous-time multi-agent systems. Kybernetika 52 2016), 6, 898-913.
DOI |
MR 3607853
[19] Ni, X. T., Wei, Y. H., Zhou, S. Y., Tao, M.:
Multi-objective network resource allocation method based on fractional PID control. Signal Process. 227 (2025), 109717.
DOI
[20] Pu, S., Shi, W., Xu, J., Nedic, A.:
Pushpull gradient methods for distributed optimization in networks. IEEE Trans. Automat. Control 66 (2021), 1, 1-16.
DOI 10.1109/TAC.2020.2972824 |
MR 4210391
[21] Pu, Y. F., Zhou, J. L., Zhang, Y., Zhang, N., Huang, G., Siarry, P.:
Fractional extreme value adaptive training method: fractional steepest descent approach. IEEE Trans. Neural Networks Learn. Systems 26 (2015), 4, 653-662.
DOI |
MR 3452478
[22] Ren, W., Cao, Y. C.: Distributed Coordination of Multi-Agent Networks: Emergent Problems, Models, and Issues. Springer Science and Business Media, 2010.
[23] Song, Y. W., Cao, J. D., Rutkowski, L.:
A fixed-time distributed optimization algorithm based on event-triggered strateg. IEEE Trans. Network Sci. Engrg. 9 (2021), 3, 1154-1162.
DOI |
MR 4431468
[24] Touri, B., Gharesifard, B.:
A modified saddle-point dynamics for distributed convex optimization on general directed graphs. IEEE Trans. Automat. Control 65 (2020), 7, 3098-3103.
DOI |
MR 4120572
[25] Varagnolo, D., Zanella, F., Cenedese, A., Pillonetto, G., Schenato, L.:
Newton-Raphson consensus for distributed convex optimization. IEEE Trans. Automat. Control 61 (2016), 4, 994-1009.
DOI |
MR 3483531
[26] Wang, D., Gao, Z. Z.:
Distributed finite-time optimization algorithms with a modified Newton-Raphson method. Neurocomputing 536 (2023), 73-79.
DOI
[27] Wang, Y. H., Lin, P., Qin, H. S.:
Distributed classification learning based on nonlinear vector support machines for switching networks. Kybernetika 53 (2017), 4, 595-611.
DOI |
MR 3730254
[28] Wang, X. Y., Wang, G. D., Li, S. H.:
Distributed finite-time optimization for integrator chain multiagent systems with disturbances. IEEE Trans. Automat. Control 65 (2020), 12, 5296-5311.
DOI |
MR 4184855
[29] Wei, Y. H., Chen, Y. Q.:
Converse Lyapunov theorem for nabla asymptotic stability without conservativeness. IEEE Trans. Systems Man Cybernet.: Systems 52 (2022), 4, 2676-2687.
DOI
[30] Wei, Y. H., Kang, Y., Yin, W. D., Wang, Y.:
Generalization of the gradient method with fractional order gradient direction. J. Franklin Inst. 357 (2020), 4, 2514-2532.
DOI |
MR 4077858
[31] Wei, Y. D., Wei, Y. H., Chen, Y. Q., Wang, Y.:
Mittag-Leffler stability of nabla discrete fractional order dynamic systems. Nonlinear Dynamics 101 (2020), 407-417.
DOI
[32] Wei, Y. H., Zhao, L. L., Zhao, X., Cao, J. D.:
Fractional difference inequalities for possible Lyapunov functions: A review. Fract. Calculus Appl. Anal. (2024).
DOI |
MR 4806296
[33] Xin, R., Khan, U. A.:
A linear algorithm for optimization over directed graphs with geometric convergence. IEEE Control Systems Lett. 2 (2018), 3, 315-320.
DOI |
MR 4208622
[34] Yang, X. L., Zhao, W. M., Yuan, J. X., Chen, T., Zhang, C., Wang, L. Q.:
Distributed optimization for fractional-order multi-agent systems based on adaptive backstepping dynamic surface control technology. Fractal Fractional 6 (2022), 11, 642.
DOI
[35] Yue, D. D., Baldi, S., Cao, J. D., Schutter, B. De:
Distributed adaptive optimization with weight-balancing. IEEE Trans. Automat. Control 67 (2022), 4, 2068-2075.
DOI |
MR 4402434
[36] Yue, D. D., Baldi, S., Cao, J. D., Li, Q., Schutter, B. De:
A directed spanning tree adaptive control solution to time-varying formations. IEEE Trans. Control Network Syst. 8 (2021), 2, 690-701.
DOI |
MR 4320626
[37] Zeng, Y. K., Wei, Y. H., Zhou, S. Y., Yue, D. D.:
Distributed optimization via active disturbance rejection control: a nabla fractional design. Kybernetika 60 (2024), 1, 90-109.
DOI |
MR 4730702
[38] Yue, D. D., Baldi, S., Cao, J. D., Li, Q., Schutter, B. De:
Distributed adaptive resource allocation: an uncertain saddle-point dynamics viewpoint. IEEE/CAA J. Automat. Sinica 10 (2023), 12, 2209-2221.
DOI |
MR 4339192
[39] Zhang, J., Liu, L., Wang, X. H., Ji, H. B.:
Fully distributed algorithm for resource allocation over unbalanced directed networks without global Lipschitz condition. IEEE Trans. Automat. Control 68 (2022), 8, 5119-5126.
DOI |
MR 4621780
[40] Zheng, Y. L., Liu, Q. S.:
A review of distributed optimization: Problems, models and algorithms. Neurocomputing 483 (2022), 446-459.
DOI
[41] Zhou, S. Y., Wei, Y. H., Liang, S., Cao, J.:
A gradient tracking protocol for optimization over nabla fractional multi-agent systems. IEEE Trans. Signal Inform. Process. Networks 10 (2024), 500-512.
DOI |
MR 4756370