[1] Aguilar-López, R., Neria-González, I.:
Controlling continuous bioreactor via nonlinear feedback: modelling and simulations approach. Bull. Polish Academy Sci., Techn. Sci. 64 (2016), 1, 235-241.
DOI
[2] López, R. Aguilar, Camacho, B. Ruiz, Neria-González, M. I., Rangel, E., Santos, O., Pérez, P. A. López:
State estimation based on nonlinear observer for hydrogen production in a photocatalytic anaerobic bioreactor. Int. J. Chemical Reactor Engrg. 15 (2017), 5, 20170004.
DOI
[3] Alcaraz-Gonzalez, V., Gonzalez-Alvarez, V.:
Robust nonlinear observers for bioprocesses: Application to wastewater treatment. In: Selected topics in dynamics and control of chemical and biological processes, Springer, Berlin Heidelberg 2007, pp. 119-164.
MR 2381866
[4] Ali, J. M., Hoang, N. H., Hussain, M. A., Dochain, D.:
Review and classification of recent observers applied in chemical process systems. Computers Chemical Engrg. 76 (2015), 27-41.
DOI
[5] Alvarado-Santos, E., Mata-Machuca, J. L., López-Pérez, P. A., Garrido-Moctezuma, R. A., Pérez-Guevara, F., Aguilar-López, R.:
Comparative analysis of a family of sliding mode observers under real-time conditions for the monitoring in the bioethanol production. Fermentation 8 (2022), 9, 446.
DOI
[6] Babaei, A. R., Malekzadeh, M., M., Madhkhan, D.:
Adaptive super-twisting sliding mode control of 6-DOF nonlinear and uncertain air vehicle. Aerospace Sci. Technol. 84 (2019), 361-374.
DOI
[7] Anderson, B D., Bitmead, R. R., Jr, C. R. Johnson, Kokotovic, P. V., Kosut, R. L., Mareels, I. M., M., I., Riedle, B. D.: Stability of adaptive Systems: Passivity and Averaging Analysis. MIT Press, 1986.
[8] Ascencio, P., Sbarbaro, D., Azevedo, S. F. de:
An adaptive fuzzy hybrid state observer for bioprocesses. IEEE Trans. Fuzzy Systems 12 (2004), 5, 641-651.
DOI
[9] Bahrami, M., Naraghi, M., M., Zareinejad, M.:
Adaptive super-twisting observer for fault reconstruction in electro-hydraulic systems. ISA Trans. 76 (2018), 235-245.
DOI
[10] Bastin, G., Dochain, D.:
On-line estimation of microbial specific growth rates. Automatica 22 (1986), 6, 705-709.
DOI
[11] Bastin, G., Dochain, D.: On-line Estimation and Adaptive Control of Bioreactors. Elsevier, New York, Amsterdam 1990.
[12] Bernard, O., Hadj‐Sadok, Z., Dochain, D., Genovesi, A., Steyer, J. P.:
Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol. Bioengrg. 75 (2001), 4, 424-438.
DOI
[13] Bouraoui, I., Farza, M., Ménard, T., Abdennour, R. B., M'Saad, M., Mosrati, H.:
Observer design for a class of uncertain nonlinear systems with sampled outputs - Application to the estimation of kinetic rates in bioreactors. Automatica 55 (2015), 78-87.
DOI |
MR 3336655
[14] Castaneda, H., Salas-Pena, O. S., León-Morales, J. de:
Extended observer based on adaptive second order sliding mode control for a fixed wing UAV. ISA Trans. 66 (2017), 226-232.
DOI
[15] Čelikovský, S., Torres-Munoz, J. A., Dominguez-Bocanegra, A. R.:
Adaptive high gain observer extension and its application to bioprocess monitoring. Kybernetika 54 (2018), 1, 155-174.
DOI |
MR 3780961
[16] Coker, A. K.: Modeling of Chemical Kinetics and Reactor Design. Gulf Professional Publishing, 2001.
[17] Cui, L., Zhang, R., Yang, H., Zuo, Z.:
Adaptive super-twisting trajectory tracking control for an unmanned aerial vehicle under gust winds. Aerospace Sci. Technol. 115 (2021), 106833.
DOI
[18] Darvehei, P., Bahri, P. A., Moheimani, N. R.:
Model development for the growth of microalgae: A review. Renewable Sustainable Energy Rev. 97 (2018), 233-258.
DOI
[19] Battista, H. De, Picó, J., Garelli, F., Vignoni, A.:
Specific growth rate estimation in (fed-) batch bioreactors using second-order sliding observers. J. Process Control 21 (2011), 7, 1049-1055.
DOI
[20] Battista, H. De, Picó, J., Garelli, F., Navarro, J. L.:
Reaction rate reconstruction from biomass concentration measurement in bioreactors using modified second-order sliding mode algorithms. Bioprocess Biosystems Engrg. 35 (2012), 1615-1625.
DOI
[21] Battista, H. De, Jamilis, M., Garelli, F., Picó, J.:
Global stabilisation of continuous bioreactors: Tools for analysis and design of feeding laws. Automatica 89 (2018), 340-348.
DOI |
MR 3762063
[22] Assis, A. J. De, Filho, R. Maciel:
Soft sensors development for on-line bioreactor state estimation. Computers Chemical Engrg. 24 (2000), 2-7, 1099-1103.
DOI
[23] Dochain, D.:
State and parameter estimation in chemical and biochemical processes: a tutorial. J. Process Control 13 (2003), 8, 801-818.
DOI
[24] Escalante, F. M., Reyna‐Angeles, K. A., Villafaña‐Rojas, J., Aguilar‐Garnica, E.:
Kinetic model selection to describe the growth curve of Arthrospira (Spirulina) maxima in autotrophic cultures. J. Chemical Technol. Biotechnol. 92 (2017), 6, 1406-1414.
DOI
[25] Falehi, A. D.:
An innovative optimal RPO-FOSMC based on multi-objective grasshopper optimization algorithm for DFIG-based wind turbine to augment MPPT and FRT capabilities. Chaos Solitons Fractals 130 (2020), 109407.
DOI |
MR 3998879
[26] Farza, M., M'Saad, M., Fall, M. L., Pigeon, E., Gehan, O., Busawon, K.:
Continuous-discrete time observers for a class of MIMO nonlinear systems. IEEE Trans. Automat. Control 59 (2013), 4, 1060-1065.
DOI |
MR 3199358
[27] García-Maaas, F., Guzmán, J. L., Berenguel, M., Acién, F. G.:
Biomass estimation of an industrial raceway photobioreactor using an extended Kalman filter and a dynamic model for microalgae production. Algal Research 37 (2019), 103-114.
DOI
[28] Gauthier, J. P., Hammouri, H., Othman, S.:
A simple observer for nonlinear systems applications to bioreactors. IEEE Trans. Automat. Control 37 (1992), 6, 875-880.
DOI |
MR 1164571 |
Zbl 0775.93020
[29] Haddad, W. M., Chellaboina, V.:
Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach. Princeton University Press 2008.
MR 2381711 |
Zbl 1142.34001
[30] Haimi, H., Mulas, M., Corona, F., Vahala, R.:
Data-derived soft-sensors for biological wastewater treatment plants: An overview. Environment. Modell. Foftware 47 (2013), 88-107.
DOI
[31] Huang, Q., Jiang, F., Wang, L., L., Yang, C.:
Design of photobioreactors for mass cultivation of photosynthetic organisms. Engrg. 3 (2017), 3, 318-329.
DOI
[32] Ioannou, P. A., Sun, J.:
Robust Adaptive Control. Courier Corporation 2012.
Zbl 0839.93002
[33] Li, Z., Zhou, S., Xiao, Y., Wang, L.:
Sensorless vector control of permanent magnet synchronous linear motor based on self-adaptive super-twisting sliding mode controller. IEEE Access 7 (2019), 44998-45011.
DOI
[34] Li, Z., Zhai, J.:
Super-twisting sliding mode trajectory tracking adaptive control of wheeled mobile robots with disturbance observer. Int. J. Robust Nonlinear Control 32 (2022), 18, 9869-9881.
DOI |
MR 4539665
[35] Liu, F. L., Farza, M., M'Saad, M.:
Unknown input observers design for a class of nonlinear systems-application to biochemical processes. IFAC Proceed. Vol. 39 (2006), 9, 131-136.
DOI
[36] Lourenco, N. D., Lopes, J. A., Almeida, C. F., Sarraguca, M. C., Pinheiro, H. M.:
Bioreactor monitoring with spectroscopy and chemometrics: a review. Anal. Bioanal. Chemistry 404 (2012), 1211-1237.
DOI
[37] Markana, A., Padhiyar, N., Moudgalya, K.:
Multi-criterion control of a bioprocess in fed-batch reactor using EKF based economic model predictive control. Chemical Engrg. Research Design 136 (2018), 282-294.
DOI
[38] Moreno, J. A.:
Observer design for bioprocesses using a dissipative approach. IFAC Proc. Vol. 41 (2008), 2, 15559-15564.
DOI
[39] Moreno, J. A., Dochain, D.:
Global observability and detectability analysis of uncertain reaction systems and observer design. Int. J. Control 81 (2008), 7, 1062-1070.
DOI |
MR 2431158
[40] Moreno, J. A., Mendoza, I.:
Application of super-twisting-like observers for bioprocesses. In: 13th International Workshop on Variable Structure Systems (VSS), IEEE 2014.pp. 1-6.
DOI
[41] Moreno, J. A., Rocha-Cózatl, E., Wouwer, A. V.:
A dynamical interpretation of strong observability and detectability concepts for nonlinear systems with unknown inputs: application to biochemical processes. Bioprocess Biosyst. Engrg. 37 (2014), 37-49.
DOI
[42] Narendra, K. S., Annaswamy, M. A.:
Stable Adaptive Systems. Courier Corporation 2012.
Zbl 1217.93081
[43] Nunez, S., Battista, H. De, Garelli, F., Vignoni, A., Picó, J.:
Second-order sliding mode observer for multiple kinetic rates estimation in bioprocesses. Control Engrg. Practice 21 (2013), 9, 1259-1265.
DOI
[44] Pan, X., Raftery, J. P., Botre, C., DeSessa, M. R., Jaladi, T., Karim, M. N.:
Estimation of unmeasured states in a bioreactor under unknown disturbances. Industr. Engrg. Chemistry Res. 58 (2019), 6, 2235-2245.
DOI
[45] Pawlowski, L., Bernard, O., Floc'h, E. Le, Sciandra, A.:
Qualitative behaviour of a phytoplankton growth model in a photobioreactor. IFAC Proc. Vol. 35 (2002), 1, 437-442.
DOI
[46] Perrier, M., Azevedo, S. F. De, Ferreira, E. C., Dochain, D.:
Tuning of observer-based estimators: theory and application to the on-line estimation of kinetic parameters. Control Engrg. Practice 8 (2000), 4, 377-388.
DOI
[47] Picó-Marco, E., Picó, J., Battista, H. De:
Sliding mode scheme for adaptive specific growth rate control in biotechnological fed-batch processes. Int. J. Control 78 (2005), 2, 128-141.
DOI |
MR 2133900
[48] Picó, J., Battista, H. De, Garelli, F.:
Smooth sliding-mode observers for specific growth rate and substrate from biomass measurement. J. Process Control 19 (2009), 8, 1314-1323.
DOI
[49] Rapaport, A., Dochain, D.:
Interval observers for biochemical processes with uncertain kinetics and inputs. Math. Biosci. 193 (2005), 2, 235-253.
DOI |
MR 2123745
[50] López, V. A. Reza, Tavares, J. N. Guerrero, Munoz, J. A. Torres:
An extended super-twisting algorithm for simultaneous estimation of reaction rates and input disturbance in bioprocess. J. Process Control 123 (2023), 131-140.
DOI
[51] Robles-Magdaleno, J. L., Rodríguez-Mata, A. E., Farza, M., M'Saad, M.:
A filtered high gain observer for a class of non uniformly observable systems–Application to a phytoplanktonic growth model. J. Process Control 87 (2020), 68-78.
DOI
[52] Rocha-Cozatl, E., Moreno, J. A., Wouwer, A. V.:
Application of a continuous-discrete unknown input observer to estimation in phytoplanktonic cultures. IFAC Proceed. Vol. 45 (2012), 15, 579-584.
DOI
[53] Sethia, G., Nayak, S. K., Majhi, S.:
An approach to estimate lithium-ion battery state of charge based on adaptive Lyapunov super twisting observer. IEEE Trans. Circuits Systems I: Regular Papers 68 (2020), 3, 1319-1329.
DOI |
MR 4290546
[54] Shtessel, Y., Edwards, C., Fridman, L., Levant, A.:
Sliding Mode Control and Observation (Vol. 10). Springer, New York 2014.
MR 3088791
[55] Vargas, A., Moreno, J. A., Wouwer, A. V.:
A weighted variable gain super-twisting observer for the estimation of kinetic rates in biological systems. J. Process Control 24 (2014), 6, 957-965.
DOI
[56] Wang, H. H., Krstic, M., Bastin, G.:
Optimizing bioreactors by extremum seeking. Int. J. Adaptive Control Signal Process. 13 (1999), 8, 651-669.
DOI
[57] Wu, S., Zhang, J., Chai, B.:
Adaptive super-twisting sliding mode observer based robust backstepping sensorless speed control for IPMSM. ISA Trans. 92 (2019), 155-165.
DOI
[58] Zuniga, I. T., Vargas, A., Latrille, E., Buitrón, G.:
Robust observation strategy to estimate the substrate concentration in the influent of a fermentative bioreactor for hydrogen production. Chemical Engrg. Sci. 129 (2015), 126-134.
DOI