[1] Álvarez, J., Servín, J., Díaz, J. A., Bernal, M.:
Differential algebraic observer-based trajectory tracking for parallel robots via linear matrix inequalities. Int. J. Systems Sci. 53 (2022), 10, 2149-2164.
DOI |
MR 4452551
[2] Arceo, J. C., Alvarez, J., Armenta, C., Lauber, J., Cremoux, S., Simoneau-Buessinger, E., Bernal, M.:
Novel solutions on model-based and model-free robotic-assisted ankle rehabilitation. Arch. Control Sci. 31 (2021), 1, 5-27.
DOI |
MR 4247216
[3] Arceo, J. C., Sánchez, M., Estrada-Manzo, V., Bernal, M.:
Convex stability analysis of nonlinear singular systems via linear matrix inequalities. IEEE Trans. Automat. Control 64 (2018), 4, 1740-1745.
DOI |
MR 3936451
[4] Berger, T.:
On observers for nonlinear differential-algebraic systems. IEEE Trans. Automat. Control 64 (2019), 5, 2150-2157.
DOI |
MR 3951060
[5] Bernal, M., Sala, A., Lendek, Z., Guerra, T. M.:
Analysis and Synthesis of Nonlinear Control Systems: A Convex Optimsation Approach. Springer, Cham 2022.
MR 4397563
[6] Bock, H. G., Schulz, V.:
Mathematical aspects of CFD-based optimization. In: Optimization and Computational Fluid Dynamics, Springer 2008, pp. 61-78.
DOI
[7] Boyd, S., Ghaoui, L. El, Feron, E., Balakrishnan, V.:
Linear matrix inequalities in system and control theory. Studies in Applied Mathematics 15, Philadelphia 1994.
DOI |
MR 1284712
[8] Cardin, P. T., Silva, P. R. da, Teixeira, M. A.:
Implicit differential equations with impasse singularities and singular perturbation problems. Israel J. Math. 189 (2012), 307-322.
DOI |
MR 2931399
[9] Duan, G. R.:
Analysis and Design of Descriptor Linear Systems. Springer-Verlag, New York 2010.
MR 2723074
[10] Gahinet, P., Nemirovskii, A., Laub, A. J., Chilali, M.:
The LMI control toolbox. In: Proc. 1994 33rd IEEE Conference on Decision and Control 3 IEEE 1994, pp. 2038-2041.
DOI |
MR 1382985
[11] Gonzalez, T., Bernal, M., Sala, A., Aguiar, B.:
Cancellation-based nonquadratic controller design for nonlinear systems via Takagi-Sugeno models. IEEE Trans. Cybernet. 47 (2016), 9, 2628-2638.
DOI
[12] Guerra, T. M., Oliveira, V. C. de, Berdjag, D., Lv, Ch., Nguyen, A. T.:
Fault tolerant observer design for a class of nonlinear systems with corrupted outputs. Int. J. Robust Nonlinear Control 34 (2024), 13, 8825-8843.
DOI |
MR 4788982
[13] Guerra, T. M., Estrada-Manzo, V., Lendek, Z.:
Observer design for Takagi-Sugeno descriptor models: An LMI approach. Automatica 52 (2015), 154-159.
DOI |
MR 3310825
[14] Inc., MathWorks: Symbolic Math Toolbox. Natick, Massachusetts 2019.
[15] Khalil, H.:
Nonlinear Control. Prentice Hall, New Jersey 2014.
DOI
[16] Lendek, Z., Guerra, T. M., R.Babuska, De-Schutter, B.: Stability analysis and nonlinear observer design using Takagi-Sugeno fuzzy models. Studies Fuzziness Soft Computing. Springer-Verlag, 2011.
[17] Merlet, J.-P.: Parallel robots. Springer Science Business Media 128, 2006.
[18] Nedialkov, N. S., Pryce, J. D., Tan, G.:
Algorithm 948: Daesaa Matlab tool for structural analysis of differential-algebraic equations: Software. ACM Trans. Math. Software (TOMS) 41 (2015), 2, 1-14.
DOI 10.1145/2700586 |
MR 3318084
[19] Ohtake, H., Tanaka, K., Wang, H. O.:
Fuzzy modeling via sector nonlinearity concept. Integrated Computer-Aided Engrg. 10 (2003), 4, 333-341.
DOI
[20] Pantelides, C. C.:
The consistent initialization of differential-algebraic systems. SIAM J. Scientific Statist. Comput. 9 (1988), 2, 213-231.
DOI |
MR 0930042
[21] Pantelides, C. C., Gritsis, D., Morison, K. R., Sargent, R. W. H.:
The mathematical modelling of transient systems using differential-algebraic equations. Computers Chemical Engrg. 12 (1988), 5, 449-454.
DOI
[22] Quintana, D., Estrada-Manzo, V., Bernal, M.:
An exact handling of the gradient for overcoming persistent problems in nonlinear observer design via convex optimization techniques. Fuzzy Sets Systems 416 (2021), 125-140.
DOI |
MR 4258759
[23] Rabier, P. J., C, W., Rheinboldt:
Nonholonomic motion of rigid mechanical systems from a DAE viewpoint. SIAM, 2000.
MR 1740801
[24] Rabier, P. J., Rheinboldt, W. C.:
Theoretical and numerical analysis of differential-algebraic equations. 2002.
MR 1893418
[25] Riaza, R.:
Differential-algebraic Systems: Analytical Aspects and Circuit Applications. World Scientific, 2008.
MR 2426820
[26] Robles, R., Sala, A., Bernal, M., González, T.:
Subspace-based Takagi-Sugeno modeling for improved LMI performance. IEEE Trans. Fuzzy Systems 25 (2016), 4, 754-767.
DOI
[27] Sadeghzadeh, A., Tóth, R.:
Linear parameter-varying embedding of nonlinear models with reduced conservativeness. IFAC-PapersOnLine 53 (2020), 2, 4737-4743.
DOI
[28] Sala, A.:
Computer control under time-varying sampling period: An LMI gridding approach. Automatica 41 (2005), 12, 2077-2082.
DOI |
MR 2174802
[29] Sala, A., Arino, C.:
Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem. Fuzzy Sets Systems 158 (2007), 24, 2671-2686.
DOI |
MR 2374213
[30] Scherer, C. W.:
LMI relaxations in robust control. European J. Control 12 (2006), 1, 3-29.
DOI |
MR 2221472
[31] Schoukens, M., Tóth, R.:
Linear parameter varying representation of a class of MIMO nonlinear systems. IFAC-PapersOnLine 51 (2018), 26, 94-99.
DOI
[32] Takaba, K., Morihira, N., Katayama, T.:
A generalized Lyapunov theorem for descriptor system. Systems Control Lett. 24 (1995), 1, 49-51.
DOI |
MR 1307127
[33] Tanaka, K., Wang, H. O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. John Wiley and Sons, New York 2001.
[34] Taniguchi, T., Tanaka, K., Wang, H. O.:
Fuzzy descriptor systems and nonlinear model following control. IEEE Trans. Fuzzy Systems 8 (2000), 4, 442-452.
DOI
[35] Zheng, G., Efimov, D., Bejarano, F. J., Perruquetti, W., Wang, H.:
Interval observer for a class of uncertain nonlinear singular systems. Automatica 71 (2016), 159-168.
DOI |
MR 3521965