Previous |  Up |  Next

Article

Title: A robust hybrid observer for estimating states, reaction rates, and an external input disturbance for a continuous bioreactor (English)
Author: Reza, Víctor
Author: Torres, Jorge
Author: Guerrero, Jesús
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 61
Issue: 3
Year: 2025
Pages: 404-428
Summary lang: English
.
Category: math
.
Summary: The controlling and monitoring of bioprocesses very often requires the estimation of certain biological concentrations that are difficult to measure, usually assuming some structure of the reaction rates which might be barely known. Although many algorithms have been designed to estimate these reaction rates, they are not robust against input disturbances and cannot be updated to treat them. This paper addresses the problem of estimating unmeasurable states, reaction rates, and input disturbance by applying a hybrid observer in a continuous bioreactor. The proposed algorithm uses an extended super-twisting algorithm coupled with an adaptive observer to exponentially estimate the reaction rates and input disturbance provided the persistent excitation condition is fulfilled. Later, an asymptotic observer estimates the unmeasurable states with the previous estimations. The hybrid observer is tested through simulations in a continuous sulfate-reducing bioprocess. Finally, the advantage of estimating the external disturbance is highlighted through its use in a disturbance rejection control to counteract its undesirable effect. (English)
Keyword: hybrid observer
Keyword: super twisting algorithm
Keyword: adaptive observer
Keyword: asymptotic observer
Keyword: continuous bioreactor
MSC: 93B11
MSC: 93D11
DOI: 10.14736/kyb-2025-3-0404
.
Date available: 2025-07-14T09:39:42Z
Last updated: 2025-07-14
Stable URL: http://hdl.handle.net/10338.dmlcz/153034
.
Reference: [1] Aguilar-López, R., Neria-González, I.: Controlling continuous bioreactor via nonlinear feedback: modelling and simulations approach..Bull. Polish Academy Sci., Techn. Sci. 64 (2016), 1, 235-241.
Reference: [2] López, R. Aguilar, Camacho, B. Ruiz, Neria-González, M. I., Rangel, E., Santos, O., Pérez, P. A. López: State estimation based on nonlinear observer for hydrogen production in a photocatalytic anaerobic bioreactor..Int. J. Chemical Reactor Engrg. 15 (2017), 5, 20170004.
Reference: [3] Alcaraz-Gonzalez, V., Gonzalez-Alvarez, V.: Robust nonlinear observers for bioprocesses: Application to wastewater treatment..In: Selected topics in dynamics and control of chemical and biological processes, Springer, Berlin Heidelberg 2007, pp. 119-164. MR 2381866
Reference: [4] Ali, J. M., Hoang, N. H., Hussain, M. A., Dochain, D.: Review and classification of recent observers applied in chemical process systems..Computers Chemical Engrg. 76 (2015), 27-41.
Reference: [5] Alvarado-Santos, E., Mata-Machuca, J. L., López-Pérez, P. A., Garrido-Moctezuma, R. A., Pérez-Guevara, F., Aguilar-López, R.: Comparative analysis of a family of sliding mode observers under real-time conditions for the monitoring in the bioethanol production..Fermentation 8 (2022), 9, 446.
Reference: [6] Babaei, A. R., Malekzadeh, M., M., Madhkhan, D.: Adaptive super-twisting sliding mode control of 6-DOF nonlinear and uncertain air vehicle..Aerospace Sci. Technol. 84 (2019), 361-374.
Reference: [7] Anderson, B D., Bitmead, R. R., Jr, C. R. Johnson, Kokotovic, P. V., Kosut, R. L., Mareels, I. M., M., I., Riedle, B. D.: Stability of adaptive Systems: Passivity and Averaging Analysis..MIT Press, 1986.
Reference: [8] Ascencio, P., Sbarbaro, D., Azevedo, S. F. de: An adaptive fuzzy hybrid state observer for bioprocesses..IEEE Trans. Fuzzy Systems 12 (2004), 5, 641-651.
Reference: [9] Bahrami, M., Naraghi, M., M., Zareinejad, M.: Adaptive super-twisting observer for fault reconstruction in electro-hydraulic systems..ISA Trans. 76 (2018), 235-245.
Reference: [10] Bastin, G., Dochain, D.: On-line estimation of microbial specific growth rates..Automatica 22 (1986), 6, 705-709.
Reference: [11] Bastin, G., Dochain, D.: On-line Estimation and Adaptive Control of Bioreactors..Elsevier, New York, Amsterdam 1990.
Reference: [12] Bernard, O., Hadj‐Sadok, Z., Dochain, D., Genovesi, A., Steyer, J. P.: Dynamical model development and parameter identification for an anaerobic wastewater treatment process..Biotechnol. Bioengrg. 75 (2001), 4, 424-438.
Reference: [13] Bouraoui, I., Farza, M., Ménard, T., Abdennour, R. B., M'Saad, M., Mosrati, H.: Observer design for a class of uncertain nonlinear systems with sampled outputs - Application to the estimation of kinetic rates in bioreactors..Automatica 55 (2015), 78-87. MR 3336655,
Reference: [14] Castaneda, H., Salas-Pena, O. S., León-Morales, J. de: Extended observer based on adaptive second order sliding mode control for a fixed wing UAV..ISA Trans. 66 (2017), 226-232.
Reference: [15] Čelikovský, S., Torres-Munoz, J. A., Dominguez-Bocanegra, A. R.: Adaptive high gain observer extension and its application to bioprocess monitoring..Kybernetika 54 (2018), 1, 155-174. MR 3780961,
Reference: [16] Coker, A. K.: Modeling of Chemical Kinetics and Reactor Design..Gulf Professional Publishing, 2001.
Reference: [17] Cui, L., Zhang, R., Yang, H., Zuo, Z.: Adaptive super-twisting trajectory tracking control for an unmanned aerial vehicle under gust winds..Aerospace Sci. Technol. 115 (2021), 106833.
Reference: [18] Darvehei, P., Bahri, P. A., Moheimani, N. R.: Model development for the growth of microalgae: A review..Renewable Sustainable Energy Rev. 97 (2018), 233-258.
Reference: [19] Battista, H. De, Picó, J., Garelli, F., Vignoni, A.: Specific growth rate estimation in (fed-) batch bioreactors using second-order sliding observers..J. Process Control 21 (2011), 7, 1049-1055.
Reference: [20] Battista, H. De, Picó, J., Garelli, F., Navarro, J. L.: Reaction rate reconstruction from biomass concentration measurement in bioreactors using modified second-order sliding mode algorithms..Bioprocess Biosystems Engrg. 35 (2012), 1615-1625.
Reference: [21] Battista, H. De, Jamilis, M., Garelli, F., Picó, J.: Global stabilisation of continuous bioreactors: Tools for analysis and design of feeding laws..Automatica 89 (2018), 340-348. MR 3762063,
Reference: [22] Assis, A. J. De, Filho, R. Maciel: Soft sensors development for on-line bioreactor state estimation..Computers Chemical Engrg. 24 (2000), 2-7, 1099-1103.
Reference: [23] Dochain, D.: State and parameter estimation in chemical and biochemical processes: a tutorial..J. Process Control 13 (2003), 8, 801-818.
Reference: [24] Escalante, F. M., Reyna‐Angeles, K. A., Villafaña‐Rojas, J., Aguilar‐Garnica, E.: Kinetic model selection to describe the growth curve of Arthrospira (Spirulina) maxima in autotrophic cultures..J. Chemical Technol. Biotechnol. 92 (2017), 6, 1406-1414.
Reference: [25] Falehi, A. D.: An innovative optimal RPO-FOSMC based on multi-objective grasshopper optimization algorithm for DFIG-based wind turbine to augment MPPT and FRT capabilities..Chaos Solitons Fractals 130 (2020), 109407. MR 3998879,
Reference: [26] Farza, M., M'Saad, M., Fall, M. L., Pigeon, E., Gehan, O., Busawon, K.: Continuous-discrete time observers for a class of MIMO nonlinear systems..IEEE Trans. Automat. Control 59 (2013), 4, 1060-1065. MR 3199358,
Reference: [27] García-Maaas, F., Guzmán, J. L., Berenguel, M., Acién, F. G.: Biomass estimation of an industrial raceway photobioreactor using an extended Kalman filter and a dynamic model for microalgae production..Algal Research 37 (2019), 103-114.
Reference: [28] Gauthier, J. P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems applications to bioreactors..IEEE Trans. Automat. Control 37 (1992), 6, 875-880. Zbl 0775.93020, MR 1164571,
Reference: [29] Haddad, W. M., Chellaboina, V.: Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach..Princeton University Press 2008. Zbl 1142.34001, MR 2381711
Reference: [30] Haimi, H., Mulas, M., Corona, F., Vahala, R.: Data-derived soft-sensors for biological wastewater treatment plants: An overview..Environment. Modell. Foftware 47 (2013), 88-107.
Reference: [31] Huang, Q., Jiang, F., Wang, L., L., Yang, C.: Design of photobioreactors for mass cultivation of photosynthetic organisms..Engrg. 3 (2017), 3, 318-329.
Reference: [32] Ioannou, P. A., Sun, J.: Robust Adaptive Control..Courier Corporation 2012. Zbl 0839.93002
Reference: [33] Li, Z., Zhou, S., Xiao, Y., Wang, L.: Sensorless vector control of permanent magnet synchronous linear motor based on self-adaptive super-twisting sliding mode controller..IEEE Access 7 (2019), 44998-45011.
Reference: [34] Li, Z., Zhai, J.: Super-twisting sliding mode trajectory tracking adaptive control of wheeled mobile robots with disturbance observer..Int. J. Robust Nonlinear Control 32 (2022), 18, 9869-9881. MR 4539665,
Reference: [35] Liu, F. L., Farza, M., M'Saad, M.: Unknown input observers design for a class of nonlinear systems-application to biochemical processes..IFAC Proceed. Vol. 39 (2006), 9, 131-136.
Reference: [36] Lourenco, N. D., Lopes, J. A., Almeida, C. F., Sarraguca, M. C., Pinheiro, H. M.: Bioreactor monitoring with spectroscopy and chemometrics: a review..Anal. Bioanal. Chemistry 404 (2012), 1211-1237.
Reference: [37] Markana, A., Padhiyar, N., Moudgalya, K.: Multi-criterion control of a bioprocess in fed-batch reactor using EKF based economic model predictive control..Chemical Engrg. Research Design 136 (2018), 282-294.
Reference: [38] Moreno, J. A.: Observer design for bioprocesses using a dissipative approach..IFAC Proc. Vol. 41 (2008), 2, 15559-15564.
Reference: [39] Moreno, J. A., Dochain, D.: Global observability and detectability analysis of uncertain reaction systems and observer design..Int. J. Control 81 (2008), 7, 1062-1070. MR 2431158,
Reference: [40] Moreno, J. A., Mendoza, I.: Application of super-twisting-like observers for bioprocesses..In: 13th International Workshop on Variable Structure Systems (VSS), IEEE 2014.pp. 1-6.
Reference: [41] Moreno, J. A., Rocha-Cózatl, E., Wouwer, A. V.: A dynamical interpretation of strong observability and detectability concepts for nonlinear systems with unknown inputs: application to biochemical processes..Bioprocess Biosyst. Engrg. 37 (2014), 37-49.
Reference: [42] Narendra, K. S., Annaswamy, M. A.: Stable Adaptive Systems..Courier Corporation 2012. Zbl 1217.93081
Reference: [43] Nunez, S., Battista, H. De, Garelli, F., Vignoni, A., Picó, J.: Second-order sliding mode observer for multiple kinetic rates estimation in bioprocesses..Control Engrg. Practice 21 (2013), 9, 1259-1265.
Reference: [44] Pan, X., Raftery, J. P., Botre, C., DeSessa, M. R., Jaladi, T., Karim, M. N.: Estimation of unmeasured states in a bioreactor under unknown disturbances..Industr. Engrg. Chemistry Res. 58 (2019), 6, 2235-2245.
Reference: [45] Pawlowski, L., Bernard, O., Floc'h, E. Le, Sciandra, A.: Qualitative behaviour of a phytoplankton growth model in a photobioreactor..IFAC Proc. Vol. 35 (2002), 1, 437-442.
Reference: [46] Perrier, M., Azevedo, S. F. De, Ferreira, E. C., Dochain, D.: Tuning of observer-based estimators: theory and application to the on-line estimation of kinetic parameters..Control Engrg. Practice 8 (2000), 4, 377-388.
Reference: [47] Picó-Marco, E., Picó, J., Battista, H. De: Sliding mode scheme for adaptive specific growth rate control in biotechnological fed-batch processes..Int. J. Control 78 (2005), 2, 128-141. MR 2133900,
Reference: [48] Picó, J., Battista, H. De, Garelli, F.: Smooth sliding-mode observers for specific growth rate and substrate from biomass measurement..J. Process Control 19 (2009), 8, 1314-1323.
Reference: [49] Rapaport, A., Dochain, D.: Interval observers for biochemical processes with uncertain kinetics and inputs..Math. Biosci. 193 (2005), 2, 235-253. MR 2123745,
Reference: [50] López, V. A. Reza, Tavares, J. N. Guerrero, Munoz, J. A. Torres: An extended super-twisting algorithm for simultaneous estimation of reaction rates and input disturbance in bioprocess..J. Process Control 123 (2023), 131-140.
Reference: [51] Robles-Magdaleno, J. L., Rodríguez-Mata, A. E., Farza, M., M'Saad, M.: A filtered high gain observer for a class of non uniformly observable systems–Application to a phytoplanktonic growth model..J. Process Control 87 (2020), 68-78.
Reference: [52] Rocha-Cozatl, E., Moreno, J. A., Wouwer, A. V.: Application of a continuous-discrete unknown input observer to estimation in phytoplanktonic cultures..IFAC Proceed. Vol. 45 (2012), 15, 579-584.
Reference: [53] Sethia, G., Nayak, S. K., Majhi, S.: An approach to estimate lithium-ion battery state of charge based on adaptive Lyapunov super twisting observer..IEEE Trans. Circuits Systems I: Regular Papers 68 (2020), 3, 1319-1329. MR 4290546,
Reference: [54] Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation (Vol. 10)..Springer, New York 2014. MR 3088791
Reference: [55] Vargas, A., Moreno, J. A., Wouwer, A. V.: A weighted variable gain super-twisting observer for the estimation of kinetic rates in biological systems..J. Process Control 24 (2014), 6, 957-965.
Reference: [56] Wang, H. H., Krstic, M., Bastin, G.: Optimizing bioreactors by extremum seeking..Int. J. Adaptive Control Signal Process. 13 (1999), 8, 651-669.
Reference: [57] Wu, S., Zhang, J., Chai, B.: Adaptive super-twisting sliding mode observer based robust backstepping sensorless speed control for IPMSM..ISA Trans. 92 (2019), 155-165.
Reference: [58] Zuniga, I. T., Vargas, A., Latrille, E., Buitrón, G.: Robust observation strategy to estimate the substrate concentration in the influent of a fermentative bioreactor for hydrogen production..Chemical Engrg. Sci. 129 (2015), 126-134.
.

Files

Files Size Format View
Kybernetika_61-2025-3_4.pdf 925.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo