[1] Abdulali, B. A. A., Bakar, M. A. Abu, Ibrahim, K., Ariff, N. Mohd:
Extreme value distributions: An overview of estimation and simulation. J. Probab. Statist. 1 (2022), 5449751.
DOI
[2] Bakar, M. A. A., Ariff, N. M., Nadzir, M. S. M.: Comparative analysis between l-moments and maximum product spacing method for extreme pm concentration. In: International Conference on Mathematical Sciences and Statistics (ICMSS 2022), pp. 214-227.
[3] Baran, S., Szokol, P., Szabó, M.:
Truncated generalized extreme value distribution based emos model for calibration of wind speed ensemble forecasts. Environmetrics 32 (2021), 6, e2678.
DOI
[4] Box, G. E., Cox, D. R.:
An analysis of transformations. J. Royal Statist. Soc.: Series B (Methodological) 26 (1964), 2, 211-243.
DOI |
Zbl 0504.62058
[5] Bücher, A., Segers, J.:
On the maximum likelihood estimator for the generalized extreme-value distribution. Extremes 20 (2017), 4, 839-872.
DOI
[6] Coles, S., Bawa, J., Trenner, L., Dorazio, P.: An Introduction to Statistical Modeling of Extreme Values. Springer, London 2001.
[7] Efron, B.:
Bootstrap methods: Another look at the jackknife. Ann. Statist. 1 (1979), 1, 1-26.
DOI
[8] Efron, B.:
Nonparametric standard errors and confidence intervals. Canadian J. Statist. 9 (1981), 2, 139-158.
DOI
[9] Efron, B.:
Better bootstrap confidence intervals. J. American Statis. Assoc. 82 (1987), 397, 171-185.
DOI
[10] Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, Berlin 1997.
[11] Fisher, R. A., Tippett, L. H. C.:
Limiting forms of the frequency distribution of the largest or smallest member of a sample. Math. Proc. Cambridge Philosoph. Soc. 24 (1928), 2, 180-190.
DOI
[12] Fréchet, M.: Sur la loi de probabilité de l'écart maximum. Ann. Soc. Math. Polon. 6 (1927), 93-116.
[13] Gnedenko, B.:
Sur la distribution limite du terme maximum d'une serie aleatoire. Ann. Math. 44 (1943), 2, 423-453.
DOI 10.2307/1968974
[14] Hosking, J. R.:
Algorithm as 215: Maximum-likelihood estimation of the parameters of the generalized extreme-value distribution. J. Royal Statist. Soc.: Series C (Applied Statistics) 34 (1985), 3, 301-310.
DOI
[15] Hosking, J. R.:
L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J. Royal Statist. Soc.: Series B (Methodological) 52 (1990), 1, 105-124.
DOI |
Zbl 0703.62018
[16] Hosking, J. R. M., Wallis, J. R., Wood, E. F.:
Estimation of the generalized extreme-value distribution by the method of probability-weighted moments. Technometrics 27 (1985), 3, 251-261.
DOI
[17] Jenkinson, A. F.:
The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Quarterly J. Royal Meteorolog. Soc. 81 (1955), 348, 158-171.
DOI
[18] Leadbetter, M. R., Lindgren, G., Rootzén, H.:
Extremes and Related Properties of Random Sequences and Processes. Springer, New York 1983.
Zbl 0518.60021
[19] Madsen, H., Rasmussen, P. F., Rosbjerg, D.:
Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events: 1. At-site modeling. Water Resources Res. 33 (1997), 4, 747-757.
DOI
[20] Martins, E. S., Stedinger, J. R.:
Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Res. 36 (2000), 3, 737-744.
DOI
[21] Pickands, J.:
Statistical inference using extreme order statistics. Ann. Statist. 3 (1975), 1, 119-131.
DOI
[22] Prescott, P., Walden, A.:
Maximum likelihood estimation of the parameters of the generalized extreme-value distribution. Biometrika 67 (1980), 3, 723-724.
DOI
[23] Resnick, S. I.: Extreme Values, Regular Variation, and Point Processes. Springer, New York 1987.
[24] Rizzo, M. L.: Statistical Computing with R. Chapman and Hall/CRC, New York 2019.
[25] Smith, R. L.:
Maximum likelihood estimation in a class of nonregular cases. Biometrika 72 (1985), 1, 67-90.
DOI
[26] Stedinger, J. R., Vogel, R. M., Foufoula-Georgiou, E.: Frequency analysis of extreme events. In: Handbook of Hydrology (D. R. Maidment, ed.), 18 (1993), McGraw-Hill, New York, pp. 18.1-18.66.
[27] Zyl, J. M. Van:
A median regression model to estimate the parameters of the three-parameter generalized pareto distribution. Commun. Statist.-Simul. Comput. 41 (2012), 4, 544-553.
DOI
[28] Mises, R. Von: La distribution de la plus grande de n valuers. Rev. Math. Union Interbalcanique 1 (1936), 141-160.
[29] Wong, T., Li, W.:
A note on the estimation of extreme value distributions using maximum product of spacings. Inst. Math. Statist. Lect. Notes - Monogr. Ser. 55 (2006), 272-283.
DOI
[30] Yılmaz, A., Kara, M., Özdemir, O.:
Comparison of different estimation methods for extreme value distribution. J. Appl. Statist. 48 (2021), 13-15, 2259-2284.
DOI
[31] Zellner, A.: An Introduction to Bayesian Inference in Econometrics. Wiley, New York 1996.
[32] Zhang, L., Shaby, B. A.:
Uniqueness and global optimality of the maximum likelihood estimator for the generalized extreme value distribution. Biometrika 109 (2022), 3, 853-864.
DOI