| Title:
|
A regression method of estimation for generalized extreme value distribution (English) |
| Author:
|
Anand, R. |
| Author:
|
Chandran, C. |
| Language:
|
English |
| Journal:
|
Kybernetika |
| ISSN:
|
0023-5954 (print) |
| ISSN:
|
1805-949X (online) |
| Volume:
|
61 |
| Issue:
|
4 |
| Year:
|
2025 |
| Pages:
|
467-480 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
This study focuses on parameter estimation for the generalized extreme value distribution (GEVD) using the regression method described by [Van2012median]. A regression equation is derived from the cumulative distribution function and the scale parameter is estimated by applying the iterative re-weighted least squares in this regression equation. For estimating the shape parameter, a profile likelihood is constructed based on this regression equation. A comparison study of the regression method with other existing estimators derived from the method of moments, maximum likelihood, probability-weighted moments, l-moments, and maximum product spacing is performed for the GEVD. Also, the left truncated GEVD is considered and the behaviour of its hazard function is studied. The parameter estimates of the left truncated GEVD is also derived using the regression method. An extensive simulation study is conducted and the efficiencies of the estimation techniques are analysed. The bootstrap confidence intervals for the estimators are also constructed. Finally, a real data analysis is carried out to illustrate the applicability of the models and estimation techniques. (English) |
| Keyword:
|
generalized extreme value distribution |
| Keyword:
|
regression method |
| Keyword:
|
Box–Cox transformation |
| Keyword:
|
profile likelihood |
| MSC:
|
60G70 |
| MSC:
|
62F35 |
| DOI:
|
10.14736/kyb-2025-4-0467 |
| . |
| Date available:
|
2025-09-19T13:13:48Z |
| Last updated:
|
2025-09-19 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/153070 |
| . |
| Reference:
|
[1] Abdulali, B. A. A., Bakar, M. A. Abu, Ibrahim, K., Ariff, N. Mohd: Extreme value distributions: An overview of estimation and simulation..J. Probab. Statist. 1 (2022), 5449751. |
| Reference:
|
[2] Bakar, M. A. A., Ariff, N. M., Nadzir, M. S. M.: Comparative analysis between l-moments and maximum product spacing method for extreme pm concentration..In: International Conference on Mathematical Sciences and Statistics (ICMSS 2022), pp. 214-227. |
| Reference:
|
[3] Baran, S., Szokol, P., Szabó, M.: Truncated generalized extreme value distribution based emos model for calibration of wind speed ensemble forecasts..Environmetrics 32 (2021), 6, e2678. |
| Reference:
|
[4] Box, G. E., Cox, D. R.: An analysis of transformations..J. Royal Statist. Soc.: Series B (Methodological) 26 (1964), 2, 211-243. Zbl 0504.62058, |
| Reference:
|
[5] Bücher, A., Segers, J.: On the maximum likelihood estimator for the generalized extreme-value distribution..Extremes 20 (2017), 4, 839-872. |
| Reference:
|
[6] Coles, S., Bawa, J., Trenner, L., Dorazio, P.: An Introduction to Statistical Modeling of Extreme Values..Springer, London 2001. |
| Reference:
|
[7] Efron, B.: Bootstrap methods: Another look at the jackknife..Ann. Statist. 1 (1979), 1, 1-26. |
| Reference:
|
[8] Efron, B.: Nonparametric standard errors and confidence intervals..Canadian J. Statist. 9 (1981), 2, 139-158. |
| Reference:
|
[9] Efron, B.: Better bootstrap confidence intervals..J. American Statis. Assoc. 82 (1987), 397, 171-185. |
| Reference:
|
[10] Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance..Springer, Berlin 1997. |
| Reference:
|
[11] Fisher, R. A., Tippett, L. H. C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample..Math. Proc. Cambridge Philosoph. Soc. 24 (1928), 2, 180-190. |
| Reference:
|
[12] Fréchet, M.: Sur la loi de probabilité de l'écart maximum..Ann. Soc. Math. Polon. 6 (1927), 93-116. |
| Reference:
|
[13] Gnedenko, B.: Sur la distribution limite du terme maximum d'une serie aleatoire..Ann. Math. 44 (1943), 2, 423-453. 10.2307/1968974 |
| Reference:
|
[14] Hosking, J. R.: Algorithm as 215: Maximum-likelihood estimation of the parameters of the generalized extreme-value distribution..J. Royal Statist. Soc.: Series C (Applied Statistics) 34 (1985), 3, 301-310. |
| Reference:
|
[15] Hosking, J. R.: L-moments: Analysis and estimation of distributions using linear combinations of order statistics..J. Royal Statist. Soc.: Series B (Methodological) 52 (1990), 1, 105-124. Zbl 0703.62018, |
| Reference:
|
[16] Hosking, J. R. M., Wallis, J. R., Wood, E. F.: Estimation of the generalized extreme-value distribution by the method of probability-weighted moments..Technometrics 27 (1985), 3, 251-261. |
| Reference:
|
[17] Jenkinson, A. F.: The frequency distribution of the annual maximum (or minimum) values of meteorological elements..Quarterly J. Royal Meteorolog. Soc. 81 (1955), 348, 158-171. |
| Reference:
|
[18] Leadbetter, M. R., Lindgren, G., Rootzén, H.: Extremes and Related Properties of Random Sequences and Processes..Springer, New York 1983. Zbl 0518.60021 |
| Reference:
|
[19] Madsen, H., Rasmussen, P. F., Rosbjerg, D.: Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events: 1. At-site modeling..Water Resources Res. 33 (1997), 4, 747-757. |
| Reference:
|
[20] Martins, E. S., Stedinger, J. R.: Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data..Water Resources Res. 36 (2000), 3, 737-744. |
| Reference:
|
[21] Pickands, J.: Statistical inference using extreme order statistics..Ann. Statist. 3 (1975), 1, 119-131. |
| Reference:
|
[22] Prescott, P., Walden, A.: Maximum likelihood estimation of the parameters of the generalized extreme-value distribution..Biometrika 67 (1980), 3, 723-724. |
| Reference:
|
[23] Resnick, S. I.: Extreme Values, Regular Variation, and Point Processes..Springer, New York 1987. |
| Reference:
|
[24] Rizzo, M. L.: Statistical Computing with R..Chapman and Hall/CRC, New York 2019. |
| Reference:
|
[25] Smith, R. L.: Maximum likelihood estimation in a class of nonregular cases..Biometrika 72 (1985), 1, 67-90. |
| Reference:
|
[26] Stedinger, J. R., Vogel, R. M., Foufoula-Georgiou, E.: Frequency analysis of extreme events..In: Handbook of Hydrology (D. R. Maidment, ed.), 18 (1993), McGraw-Hill, New York, pp. 18.1-18.66. |
| Reference:
|
[27] Zyl, J. M. Van: A median regression model to estimate the parameters of the three-parameter generalized pareto distribution..Commun. Statist.-Simul. Comput. 41 (2012), 4, 544-553. |
| Reference:
|
[28] Mises, R. Von: La distribution de la plus grande de n valuers..Rev. Math. Union Interbalcanique 1 (1936), 141-160. |
| Reference:
|
[29] Wong, T., Li, W.: A note on the estimation of extreme value distributions using maximum product of spacings..Inst. Math. Statist. Lect. Notes - Monogr. Ser. 55 (2006), 272-283. |
| Reference:
|
[30] Yılmaz, A., Kara, M., Özdemir, O.: Comparison of different estimation methods for extreme value distribution..J. Appl. Statist. 48 (2021), 13-15, 2259-2284. |
| Reference:
|
[31] Zellner, A.: An Introduction to Bayesian Inference in Econometrics..Wiley, New York 1996. |
| Reference:
|
[32] Zhang, L., Shaby, B. A.: Uniqueness and global optimality of the maximum likelihood estimator for the generalized extreme value distribution..Biometrika 109 (2022), 3, 853-864. |
| . |