[4] Ekeland, I., Temam, R.:
Analyse convexe et problèmes variationnels. Dunod, Gauthier-Villars, Paris (1974), French.
MR 0463993 |
Zbl 0281.49001
[6] Fujita, H.:
A mathematical analysis of motions of viscous incompressible fluid under leak and or slip boundary conditions. RIMS Kokyuroku 888 (1994), 199-216.
MR 1338892 |
Zbl 0939.76509
[8] Gfrerer, H., Mandlmayr, M., Outrata, J. V., Valdman, J.:
On the SCD semismooth* Newton method for generalized equations with applications to a class of static contact problems with Coulomb friction. Comput. Optim. Appl. 86 (2023), 1159-1191.
DOI 10.1007/s10589-022-00429-0 |
Zbl 1536.90243
[9] Haslinger, J., Kučera, R., Motyčková, K., Šátek, V.:
Numerical modeling of the leak through semipermeable walls for 2D/3D Stokes flow: Experimental scalability of dual algorithms. Mathematics 9 (2021), Article ID 2906, 24 pages.
DOI 10.3390/math9222906
[12] Haslinger, J., Mäkinen, R. A. E.:
The parameter identification in the Stokes system with threshold slip boundary conditions. ZAMM, Z. Angew. Math. Mech. 100 (2020), Article ID e201900209, 19 pages.
DOI 10.1002/zamm.201900209 |
MR 4135765 |
Zbl 07806603
[13] Haslinger, J., Mäkinen, R. A. E.:
Optimal control problems in nonsmooth solid and fluid mechanics: Computational aspects. Impact of Scientific Computing on Science and Society Springer, Cham (2023), 181-193.
DOI 10.1007/978-3-031-29082-4_10
[20] Mäkelä, M. M., Karmitsa, N., Wilppu, O.:
Proximal bundle method for nonsmooth and nonconvex multiobjective optimization. Mathematical Modeling and Optimization of Complex Structures Computational Methods in Applied Sciences 40. Springer, Cham (2016), 191-204.
DOI 10.1007/978-3-319-23564-6_12 |
MR 3411080
[22] Outrata, J., Kočvara, M., Zowe, J.:
Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications and Numerical Results. Nonconvex Optimization and its Applications 28. Kluwer Academic Publishers, Dordrecht (1998).
DOI 10.1007/978-1-4757-2825-5 |
MR 1641213 |
Zbl 0947.90093