[3] Alexanderian, A., Petra, N., Stadler, G., Ghattas, O.:
Mean-variance risk-averse optimal control of systems governed by PDEs with random parameter fields using quadratic approximations. SIAM/ASA J. Uncertain. Quantif. 5 (2017), 1166-1192.
DOI 10.1137/16M106306X |
MR 3725286 |
Zbl 1391.93289
[7] Benner, P., Onwunta, A., Stoll, M.:
Block-diagonal preconditioning for optimal control problems constrained by PDEs with uncertain inputs. SIAM J. Matrix Anal. Appl. 37 (2016), 491-518.
DOI 10.1137/15M1018502 |
MR 3483160 |
Zbl 1382.65074
[10] Borzì, A., Winckel, G. von:
Multigrid methods and sparse-grid collocation techniques for parabolic optimal control problems with random coefficients. SIAM J. Sci. Comput. 31 (2009), 2172-2192.
DOI 10.1137/070711311 |
MR 2516148 |
Zbl 1196.35029
[11] Cacuci, D. G.:
Second-order adjoint sensitivity analysis methodology (2nd-ASAM) for computing exactly and efficiently first- and second-order sensitivities in large-scale linear systems. I. Computational methodology. J. Comput. Phys. 284 (2015), 687-699.
DOI 10.1016/j.jcp.2014.12.042 |
MR 3303639 |
Zbl 1352.65130
[12] Cacuci, D. G.:
Second-order adjoint sensitivity analysis methodology (2nd-ASAM) for computing exactly and efficiently first- and second-order sensitivities in large-scale linear systems. II. Illustrative application to a paradigm particle diffusion problem. J. Comput. Phys. 284 (2015), 700-717.
DOI 10.1016/j.jcp.2014.11.030 |
MR 3303640 |
Zbl 1352.65131
[13] Cahill, N. D., Jadamba, B., Khan, A. A., Sama, M., Winkler, B. C.:
A first-order adjoint and a second-order hybrid method for an energy output least-squares elastography inverse problem of identifying tumor location. Bound. Value Probl. 2013 (2013), Article ID 263, 19 pages.
DOI 10.1186/1687-2770-2013-263 |
MR 3341371 |
Zbl 1292.35323
[14] Chen, P., Quarteroni, A., Rozza, G.:
Stochastic optimal Robin boundary control problems of advection-dominated elliptic equations. SIAM J. Numer. Anal. 51 (2013), 2700-2722.
DOI 10.1137/120884158 |
MR 3115461 |
Zbl 1281.49015
[16] Chen, Z., Zhang, W., Zou, J.:
Stochastic convergence of regularized solutions and their finite element approximations to inverse source problems. SIAM J. Numer. Anal. 60 (2022), 751-780.
DOI 10.1137/21M1409779 |
MR 4403550 |
Zbl 07506907
[17] Cho, M., Jadamba, B., Kahler, R., Khan, A. A., Sama, M.:
First-order and second-order adjoint methods for the inverse problem of identifying non-linear parameters in PDEs. Industrial Mathematics and Complex Systems Springer, Singapore (2017), 147-163.
DOI 10.1007/978-981-10-3758-0_9 |
MR 3728376 |
Zbl 1396.49028
[18] Cho, M., Jadamba, B., Khan, A. A., Oberai, A. A., Sama, M.:
Identification in mixed variational problems by adjoint methods with applications. Modeling and Optimization: Theory and Applications Springer Proceedings in Mathematics & Statistics 213. Springer, Cham (2017), 65-84.
DOI 10.1007/978-3-319-66616-7_5 |
MR 3746179 |
Zbl 1384.49009
[22] Daescu, D. N., Navon, I. M.:
Efficiency of a POD-based reduced second-order adjoint model in 4D-var data assimilation. Int. J. Numer. Methods Fluids 53 (2007), 985-1004.
DOI 10.1002/fld.1316 |
MR 2289211 |
Zbl 1370.76122
[23] Dambrine, M., Khan, A. A., Sama, M.:
A stochastic regularized second-order iterative scheme for optimal control and inverse problems in stochastic partial differential equations. Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 380 (2022), Article ID 20210352, 13 pages.
DOI 10.1098/rsta.2021.0352 |
MR 4505744
[24] Dambrine, M., Khan, A. A., Sama, M., Starkloff, H.-J.:
Stochastic elliptic inverse problems: Solvability, convergence rates, discretization, and applications. J. Convex Anal. 30 (2023), 851-885.
MR 4650286 |
Zbl 1522.35577
[25] Dippon, J., Gwinner, J., Khan, A. A., Sama, M.:
A new regularized stochastic approximation framework for stochastic inverse problems. Nonlinear Anal., Real World Appl. 73 (2023), Article ID 103869, 29 pages.
DOI 10.1016/j.nonrwa.2023.103869 |
MR 4563581 |
Zbl 1519.35367
[28] Gong, B., Liu, W., Tang, T., Zhao, W., Zhou, T.:
An efficient gradient projection method for stochastic optimal control problems. SIAM J. Numer. Anal. 55 (2017), 2982-3005.
DOI 10.1137/17M1123559 |
MR 3730543 |
Zbl 1386.60239
[30] Guth, P. A., Kaarnioja, V., Kuo, F. Y., Schillings, C., Sloan, I. H.:
A quasi-Monte Carlo method for optimal control under uncertainty. SIAM/ASA J. Uncertain. Quantif. 9 (2021), 354-383.
DOI 10.1137/19M1294952 |
MR 4241521 |
Zbl 1475.49004
[31] Hawks, R., Jadamba, B., Khan, A. A., Sama, M., Yang, Y.:
A variational inequality based stochastic approximation for inverse problems in stochastic partial differential equations. Nonlinear Analysis and Global Optimization Springer Optimization and Its Applications 167. Springer, Cham (2021), 207-226.
DOI 10.1007/978-3-030-61732-5_9 |
MR 4238578 |
Zbl 1472.35451
[32] Huang, F., Chen, Y., Chen, Y., Sun, H.:
Stochastic collocation for optimal control problems with stochastic PDE constraints by meshless techniques. J. Math. Anal. Appl. 530 (2024), Article ID 127634, 18 pages.
DOI 10.1016/j.jmaa.2023.127634 |
MR 4623961 |
Zbl 07759006
[33] Jadamba, B., Khan, A. A., Oberai, A. A., Sama, M.:
First-order and second-order adjoint methods for parameter identification problems with an application to the elasticity imaging inverse problem. Inverse Probl. Sci. Eng. 25 (2017), 1768-1787.
DOI 10.1080/17415977.2017.1289195 |
MR 3698480 |
Zbl 1387.92057
[34] Jadamba, B., Khan, A. A., Raciti, F., Sama, M.:
A variational inequality based stochastic approximation for estimating the flexural rigidity in random fourth-order models. Commun. Nonlinear Sci. Numer. Simul. 111 (2022), Article ID 106406, 11 pages.
DOI 10.1016/j.cnsns.2022.106406 |
MR 4402577 |
Zbl 1489.35312
[35] Jadamba, B., Khan, A. A., Sama, M.:
A regularized stochastic subgradient projection method for an optimal control problem in a stochastic partial differential equation. Mathematical Analysis in Interdisciplinary Research Springer Optimization and Its Applications 179. Springer, Cham (2021), 417-429.
DOI 10.1007/978-3-030-84721-0_19 |
MR 4404289 |
Zbl 1500.93146
[36] Jadamba, B., Khan, A. A., Sama, M., Starkloff, H.-J., Tammer, C.:
A convex optimization framework for the inverse problem of identifying a random parameter in a stochastic partial differential equation. SIAM/ASA J. Uncertain. Quantif. 9 (2021), 922-952.
DOI 10.1137/20M1323953 |
MR 4279154 |
Zbl 1471.35332
[37] Jadamba, B., Khan, A. A., Sama, M., Yang, Y.:
An iteratively regularized stochastic gradient method for estimating a random parameter in a stochastic PDEs: A variational inequality approach. J. Nonlinear Var. Anal. 5 (2021), 865-880.
DOI 10.23952/jnva.5.2021.6.02 |
Zbl 07557729
[38] Jensen, J. S., Nakshatrala, P. B., Tortorelli, D. A.:
On the consistency of adjoint sensitivity analysis for structural optimization of linear dynamic problems. Struct. Multidiscip. Optim. 49 (2014), 831-837.
DOI 10.1007/s00158-013-1024-4 |
MR 3198981
[43] Kourounis, D., Durlofsky, L. J., Jansen, J. D., Aziz, K.:
Adjoint formulation and constraint handling for gradient-based optimization of compositional reservoir flow. Comput. Geosci. 18 (2014), 117-137.
DOI 10.1007/s10596-013-9385-8 |
MR 3208745 |
Zbl 1393.76122
[44] Kubínová, M., Pultarová, I.:
Block preconditioning of stochastic Galerkin problems: New two-sided guaranteed spectral bounds. SIAM/ASA J. Uncertain. Quantif. 8 (2020), 88-113.
DOI 10.1137/19M125902X |
MR 4051982 |
Zbl 1447.65151
[47] Liu, G., Geier, M., Liu, Z., Krafczyk, M., Chen, T.:
Discrete adjoint sensitivity analysis for fluid flow topology optimization based on the generalized lattice Boltzmann method. Comput. Math. Appl. 68 (2014), 1374-1392.
DOI 10.1016/j.camwa.2014.09.002 |
MR 3272547 |
Zbl 1367.76044
[50] Zanganeh, M. Namdar, Kraaijevanger, J. F. B. M., Buurman, H. W., Jansen, J. D., Rossen, W. R.:
Challenges in adjoint-based optimization of a foam EOR process. Comput. Geosci. 18 (2014), 563-577.
DOI 10.1007/s10596-014-9412-4 |
MR 3253767
[57] Tottorelli, D. A., Michaleris, P.:
Design sensitivity analysis: Overview and review. Inverse Probl. Eng. 1 (1994), 71-105.
DOI 10.1080/174159794088027573
[63] Wang, Z., Navon, I. M., Dimet, F. X. Le, Zou, X.:
The second order adjoint analysis: Theory and applications. Meteorology Atmospheric Phys. 50 (1992), 3-20.
DOI 10.1007/BF01025501